已知橢圓和雙曲線有相同的焦點F1、F2,點P為橢圓和雙曲線的一個交點,則|PF1|·|PF2|的值是       
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)橢圓的左、右焦點分別為,過的直線 與橢圓交于兩點。
(Ⅰ)若點在圓為橢圓的半焦距)上,且,求橢圓的離心率;
  (Ⅱ)若函數(shù)的圖象,無論為何值時恒過定點,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
某公園的大型中心花園的邊界為橢圓,花園內(nèi)種植各種花草. 為增強(qiáng)觀賞性,在橢圓內(nèi)以其
中心為直角頂點且關(guān)于中心對稱的兩個直角三角形內(nèi)種植名貴花草(如圖),并以該直角三角
形斜邊開辟觀賞小道(其中的一條為線段). 某園林公司承接了該中心花園的施工建設(shè),
在施工時發(fā)現(xiàn),橢圓邊界上任意一點到橢圓兩焦點的距離和為4(單位:百米),且橢圓上點
到焦點的最近距離為1(單位:百米).
(Ⅰ)以橢圓中心為原點建立如圖的坐標(biāo)系,求該橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)請計算觀賞小道的長度(不計小道寬度)的最大值.
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
在直角坐標(biāo)系中,橢圓的左、右焦點分別為. 其中也是拋物線的焦點,點在第一象限的交點,且
(Ⅰ)求的方程;
(Ⅱ)若過點的直線交于不同的兩點.之間,試求面積之比的取值范圍.(O為坐標(biāo)原點)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

((本題滿分14分)
已知橢圓的兩個焦點,且橢圓短軸的兩個端點與構(gòu)成正三角形.
(1)求橢圓的方程;
(2)過點(1,0)且與坐標(biāo)軸不平行的直線與橢圓交于不同兩點P、Q,若在軸上存在定點E(,0),使恒為定值,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,且過點,設(shè)橢圓的右準(zhǔn)線軸的交點為,橢圓的上頂點為,直線被以原點為圓心的圓所截得的弦長為

⑴求橢圓的方程及圓的方程;
⑵若是準(zhǔn)線上縱坐標(biāo)為的點,求證:存在一個異于的點,對于圓上任意一點,有為定值;且當(dāng)在直線上運動時,點在一個定圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知F1、F2分別是橢圓的左、右焦點,曲線C是坐標(biāo)原點為頂點,以F2為焦點的拋物線,過點F1的直線曲線C于x軸上方兩個不同點P、Q,點P關(guān)于x軸的對稱點為M,設(shè)
(I)求,求直線的斜率k的取值范圍;
(II)求證:直線MQ過定點。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓,過右焦點
斜率為的直線與兩點,若,則 (  )
A. 1B. C.D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
橢圓E:與直線相交于A、B兩點,且OA丄OB(O為坐標(biāo)原點).
(I)求橢圓E與圓的交點坐標(biāo):
(II)當(dāng)時,求橢圓E的方程.

查看答案和解析>>

同步練習(xí)冊答案