是定義在上的函數(shù),且,對任意,若經(jīng)過點的直線與軸的交點為,則稱關于函數(shù)的平均數(shù),記為,例如,當時,可得,即的算術平均數(shù).
時,的幾何平均數(shù);
時,的調(diào)和平均數(shù);
(以上兩空各只需寫出一個符合要求的函數(shù)即可)

(1);(2).

解析試題分析:設,則三點共線:
①依題意,,則,,化簡得
故可以選擇.
②依題意,,則,,化簡得,
故可以選擇.
考點:兩個數(shù)的幾何平均數(shù)與調(diào)和平均數(shù),難度中等.新定義型試題是高考的熱點試題,考生錯誤往往有二,其一為不能正確理解題意,將新問題轉化為所熟悉的數(shù)學問題;其二,不具備歸納、猜想、推理、傳化等數(shù)學能力.但縱觀湖北近四年高考試題,新定義型試題是必考試題,在專題復習中應加強訓練.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

已知定義在上的偶函數(shù)滿足:且在區(qū)間
單調(diào)遞增,那么,下列關于此函數(shù)性質(zhì)的表述:
①函數(shù)的圖象關于直線對稱; ②函數(shù)是周期函數(shù);
③當時,; ④函數(shù)的圖象上橫坐標為偶數(shù)的點都是函數(shù)的極小值點。 其中正確表述的番號是              .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

對于函數(shù),若存在實數(shù)對(),使得等式對定義域中的每一個都成立,則稱函數(shù)是“()型函數(shù)”.
(1) 判斷函數(shù)是否為 “()型函數(shù)”,并說明理由;
(2) 若函數(shù)是“()型函數(shù)”,求出滿足條件的一組實數(shù)對;
(3)已知函數(shù)是“型函數(shù)”,對應的實數(shù)對,當時,,若當時,都有,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知定義域為的函數(shù)同時滿足以下三個條件:
①對任意的,總有;
;
③當,且時,成立.
稱這樣的函數(shù)為“友誼函數(shù)”.
請解答下列各題:
(1)已知為“友誼函數(shù)”,求的值;
(2)函數(shù)在區(qū)間上是否為“友誼函數(shù)”?請給出理由;
(3)已知為“友誼函數(shù)”,假定存在,使得,且,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

函數(shù).
(1)若,函數(shù)在區(qū)間上是單調(diào)遞增函數(shù),求實數(shù)的取值范圍;
(2)設,若對任意恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)為實常數(shù)).
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)設在區(qū)間上的最小值為,求的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某公司為一家制冷設備廠設計生產(chǎn)一種長方形薄板,其周長為4米,這種薄板須沿其對角線折疊后使用.如圖所示,ABCD(AB>AD)為長方形薄板,沿AC折疊后,AB′交DC于點P.當△ADP的面積最大時最節(jié)能,凹多邊形ACB′PD的面積最大時制冷效果最好.

(1)設AB=x(米),用x表示圖中DP的長度,并寫出x的取值范圍;
(2)若要求最節(jié)能,應怎樣設計薄板的長和寬?
(3)若要求制冷效果最好,應怎樣設計薄板的長和寬?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)為實常數(shù)).
(1)若函數(shù)在區(qū)間上是增函數(shù),試用函數(shù)單調(diào)性的定義求實數(shù)的取值范圍;
(2)設,若不等式有解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知冪函數(shù)f(x)=x(m2+m)-1(m∈N*),經(jīng)過點(2,),試確定m的值,并求滿足條件f(2-a)>f(a-1)的實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案