精英家教網 > 高中數學 > 題目詳情

【題目】一個樣本M的數據是x1 , x2 , ,xn , 它的平均數是5,另一個樣本N的數據x12 , x22 , ,xn2它的平均數是34.那么下面的結果一定正確的是(
A.SM2=9
B.SN2=9
C.SM2=3
D.Sn2=3

【答案】A
【解析】解:設樣本M的數據x12,x22,,xn2它的方差為S2,則

S2= [(x1﹣5)2+(x2﹣5)^2+(x3﹣5)2+(xn﹣5)2]

= [x12+x22+x32xn2﹣10(x1+x2+x3++xn)+25×n]

=34﹣10×5+25=9,

∴SM2=9.

故選:A.

【考點精析】認真審題,首先需要了解極差、方差與標準差(標準差和方差越大,數據的離散程度越大;標準差和方程為0時,樣本各數據全相等,數據沒有離散性;方差與原始數據單位不同,解決實際問題時,多采用標準差).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= sinxcosx﹣cos2x+ ,(x∈R).
(1)若對任意x∈[﹣ , ],都有f(x)≥a,求a的取值范圍;
(2)若先將y=f(x)的圖象上每個點縱坐標不變,橫坐標變?yōu)樵瓉淼?倍,然后再向左平移 個單位得到函數y=g(x)的圖象,求函數y=g(x)﹣ 在區(qū)間[﹣2π,4π]內的所有零點之和.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若f(x)=sin(2x+φ)+ cos(2x+φ)(0<φ<π)是R上的偶函數,則φ=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某同學用“五點法”畫函數f(x)=Asin(ωx+φ)+B,A>0,ω>0,|φ|< 在某一個周期的圖象時,列表并填入了部分數據,如表:

ωx+φ

0

π

x

x1

x2

x3

Asin(ωx+φ)+B

0

0

0


(1)請求出上表中的x1 , x2 , x3 , 并直接寫出函數f(x)的解析式;
(2)若3sin2 mf( )≥m+2對任意x∈[0,2π]恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】等比數列{an}的各項均為正數,且a5a6+a4a7=18,則log3a1+log3a2+…+log3a10=(
A.5
B.9
C.log345
D.10

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知向量 =(cosx,﹣1), =( sinx,cos2x),設函數f(x)= +
(Ⅰ)求函數f(x)的最小正周期和單調遞增區(qū)間;
(Ⅱ)當x∈(0, )時,求函數f(x)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】化簡計算:
(1)化簡:
(2)已知:sinαcosα= ,且 <α< ,求cosα﹣sinα的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《九章算術》中,將底面為長方形且有一條側棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑,如圖,網格紙上正方形小格的邊長為1,圖中粗線畫出的是某幾何體毛坯的三視圖,第一次切削,將該毛坯得到一個表面積最大的長方體,第二次切削沿長方體的對角面刨開,得到兩個三棱柱,第三次切削將兩個三棱柱分別沿棱和表面的對角線刨開得到兩個鱉臑和兩個陽馬,則陽馬與鱉臑的體積之比為(
A.3:1
B.2:1
C.1:1
D.1:2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】四棱錐P﹣ABCD中,底面ABCD為直角梯形,AB⊥AD,BC∥AD,且AB=BC=2,AD=3,PA⊥平面ABCD且PA=2,則PB與平面PCD所成角的正弦值為(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案