已知拋物線
(1)若圓心在拋物線上的動(dòng)圓,大小隨位置而變化,但總是與直線相切,求所有的圓都經(jīng)過的定點(diǎn)坐標(biāo);
(2)拋物線的焦點(diǎn)為,若過點(diǎn)的直線與拋物線相交于兩點(diǎn),若,求直線的斜率;
(3)若過正半軸上點(diǎn)的直線與該拋物線交于兩點(diǎn),為拋物線上異于的任意一點(diǎn),記連線的斜率為試求滿足成等差數(shù)列的充要條件.
(1);(2);(3)直線軸相垂直

試題分析:(1)本題考查拋物線的定義,由于直線是已知拋物線的的準(zhǔn)線,而圓心在拋物線上的圓既然與準(zhǔn)線相切,則它必定過拋物線的焦點(diǎn),所以所有的圓必過拋物線的焦點(diǎn),即定點(diǎn);(2)這是直線與拋物線相交問題,設(shè)如設(shè),則,兩式相減有,則,下面就是要求,為此,我們?cè)O(shè)直線方程為,把它與拋物線方程聯(lián)立方程組,消去,就可得到關(guān)于的方程,可得,,只是里面含有,這里解題的關(guān)鍵就是已知條件怎樣用?實(shí)際上有這個(gè)條件可得,這樣與剛才的合起來就能求出;(3)設(shè),成等差數(shù)列即,仿照(2)此式為①,由于直線可能與軸垂直,但不會(huì)與軸垂直,設(shè)直線的方程為,代入拋物線方程消去得關(guān)于的二次方程,可得,這樣①式可化為,從而得到,即直線的方程為,與軸垂直.
試題解析:(1) 由定義可得定點(diǎn)(1,0);(4分)
(2)設(shè),由,得(5分)
由方程組,得
(7分)聯(lián)立上述方程求得:.(9分)
(3)(理)設(shè)直線的方程為,代入,得:,設(shè),則(11分)

,即
,即:
由此得:,,(15分)
所以當(dāng)直線的方程為時(shí),也就是成立的充要條件是直線軸相垂直。(16分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線C:,點(diǎn)A、B在拋物線C上.

(1)若直線AB過點(diǎn)M(2p,0),且=4p,求過A,B,O(O為坐標(biāo)原點(diǎn))三點(diǎn)的圓的方程;
(2)設(shè)直線OA、OB的傾斜角分別為,且,問直線AB是否會(huì)過某一定點(diǎn)?若是,求出這一定點(diǎn)的坐標(biāo),若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線上的任意一點(diǎn)到該拋物線焦點(diǎn)的距離比該點(diǎn)到軸的距離多1.

(1)求的值;
(2)如圖所示,過定點(diǎn)(2,0)且互相垂直的兩條直線、分別與該拋物線分別交于、、四點(diǎn).
(i)求四邊形面積的最小值;
(ii)設(shè)線段、的中點(diǎn)分別為、兩點(diǎn),試問:直線是否過定點(diǎn)?若是,求出定點(diǎn)坐標(biāo);若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過點(diǎn)(0,1)作直線,使它與拋物線y2=4x僅有一個(gè)公共點(diǎn),這樣的直線有(  )
A.1條B.2條C.3條D.4條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過拋物線的焦點(diǎn)作直線交拋物線于A、B兩點(diǎn),若線段AB中點(diǎn)的橫坐標(biāo)為3,則等于          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線y2=2px(p≠0)上存在關(guān)于直線x+y=1對(duì)稱的相異兩點(diǎn),則實(shí)數(shù)p的取值范圍為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線y2=2px(p>0)的焦點(diǎn)為F,P、Q是拋物線上的兩個(gè)點(diǎn),若△PQF是邊長(zhǎng)為2的正三角形,則p的值是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)為拋物線的焦點(diǎn),為該拋物線上三點(diǎn),若,則(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線y2=8x的焦點(diǎn)到準(zhǔn)線的距離是(  )
A.1B.2C.4D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案