【題目】設點A,B的坐標分別為(-2,0),(2,0)直線AM,BM相交于點M,且它們的斜率之積是-.
(1)求點M的軌跡E的方程;
(2)設直線l:y=kx與E交于C,D兩點,F1(-1,0),F2(1,0),若E上存在點P,使得,求實數k的取值范圍.
【答案】(1),(x≠±2)(2)k的取值范圍是[-)∪(0,]
【解析】
(1)設M(x,y),由題意得 ,由此能求出點M的軌跡E的方程.
(2)設C(x1,y1),P(2cos,),則=2,點P到直線l的距離d==≤,|CD|=2|y1|,k≠0,從而S△PCD=≤|y1|.從而只需4|y1|≤|y1|,由此能求出k的取值范圍.
(1)設M(x,y),由題意得: (x≠±2),
化簡,得點M的軌跡E的方程為,(x≠±2).
(2)設C(x1,y1),P(2cos,),
∴=2=,
點P到直線l的距離d=≤,
∵|CD|=2|y1|,k≠0,
∴S△PCD=≤|y1|=|y1|.
∵E上存在點P,使得,
∴只需4|y1|≤|y1|,解得k2.
∵k≠0,∴k的取值范圍是[-)∪(0,].
科目:高中數學 來源: 題型:
【題目】在如圖所示的平面直角坐標系中,已知點A(1,0)和點B(﹣1,0),,且∠AOC=x,其中O為坐標原點.
(1)若x=,設點D為線段OA上的動點,求的最小值;
(2)若R,求的最大值及對應的x值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下面四個命題:
①在定義域上單調遞增;
②若銳角,滿足,則;
③是定義在上的偶函數,且在上是增函數,若,則;
④函數的一個對稱中心是;
其中真命題的序號為______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校100名學生期中考試數學成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間如下:
組號 | 第一組 | 第二組 | 第三組 | 第四組 | 第五組 |
分組 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
(1)求圖中a的值;
(2)根據頻率分布直方圖,估計這100名學生期中考試數學成績的平均分;
(3)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機抽取6名學生,將該樣本看成一個總體,從中隨機抽取2名,求其中恰有1人的分數不低于90分的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓E的方程為 (a>b>0),點O為坐標原點,點A的坐標為(a,0),點B的坐標為(0,b),點M在線段AB上,滿足BM=2MA,直線OM的斜率為.
(1)求E的離心率e;
(2)設點C的坐標為(0,-b),N為線段AC的中點,點N關于直線AB的對稱點的縱坐標為,求E的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對某校高三年級學生參加社區(qū)服務次數進行統(tǒng)計,隨機抽取M名學生作為樣本,得到這M名學生參加社區(qū)服務的次數,根據此數據作出了頻數與頻率的統(tǒng)計表和頻率分布直方圖.
分組 | 頻數 | 頻率 |
[10,15) | 10 | 0.25 |
[15,20) | 24 | n |
[20,25) | m | p |
[25,30] | 2 | 0.05 |
合計 | M | 1 |
(1)求出表中M,p及圖中a的值;
(2)若該校高三學生有240人,試估計該校高三學生參加社區(qū)服務的次數在區(qū)間[10,15)內的人數;
(3)估計這次學生參加社區(qū)服務人數的眾數、中位數以及平均數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
Ⅰ若曲線在點處的切線與直線垂直,求函數的單調區(qū)間;
Ⅱ若對于都有成立,試求a的取值范圍;
Ⅲ記當時,函數在區(qū)間上有兩個零點,求實數b的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com