【題目】在平面直角坐標(biāo)系中,曲線上的動(dòng)點(diǎn)到點(diǎn)的距離減去到直線的距離等于1.
(1)求曲線的方程;
(2)若直線 與曲線交于,兩點(diǎn),求證:直線與直線的傾斜角互補(bǔ).
【答案】(1);(2)見(jiàn)解析
【解析】
(1)利用拋物線定義“到定點(diǎn)距離等2于到定直線距離的點(diǎn)的軌跡”求動(dòng)點(diǎn)的軌跡;
(2)設(shè)直線與拋物線方程聯(lián)立化為,.由于,利用根與系數(shù)的關(guān)系與斜率計(jì)算公式可得:直線與直線的斜率之和0,即可證明
(1)曲線上的動(dòng)點(diǎn)到點(diǎn)的距離減去到直線的距離等于1,
所以動(dòng)點(diǎn)到直線的距離與它到點(diǎn)的距離相等,
故所求軌跡為:以原點(diǎn)為頂點(diǎn),開(kāi)口向右的拋物線;
(2)證明:設(shè).聯(lián)立,得,()
∴,,,∴直線線與直線的斜率之和:
因?yàn)?/span>∴直線與直線的斜率之和為,
∴直線與直線的傾斜角互補(bǔ).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn)與拋物線的焦點(diǎn)重合,且橢圓的離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)橢圓右焦點(diǎn)的直線與橢圓交于兩點(diǎn)、,在軸上是否存在點(diǎn),使得為定值?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】光伏發(fā)電是利用太陽(yáng)能電池及相關(guān)設(shè)備將太陽(yáng)光能直接轉(zhuǎn)化為電能.近幾年在國(guó)內(nèi)出臺(tái)的光伏發(fā)電補(bǔ)貼政策的引導(dǎo)下,某地光伏發(fā)電裝機(jī)量急劇上漲,如下表:
某位同學(xué)分別用兩種模型:①②進(jìn)行擬合,得到相應(yīng)的回歸方程并進(jìn)行殘差分析,殘差圖如下(注:殘差等于):
經(jīng)過(guò)計(jì)算得,.
(1)根據(jù)殘差圖,比較模型①,②的擬合效果,應(yīng)該選擇哪個(gè)模型?并簡(jiǎn)要說(shuō)明理由.
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù)建立y關(guān)于x的回歸方程,并預(yù)測(cè)該地區(qū)2020年新增光伏裝機(jī)量是多少.(在計(jì)算回歸系數(shù)時(shí)精確到0.01)
附:歸直線的斜率和截距的最小二乘估計(jì)公式分別為:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線:,過(guò)拋物線焦點(diǎn)且與軸垂直的直線與拋物線相交于、兩點(diǎn),且的周長(zhǎng)為.
(1)求拋物線的方程;
(2)若直線過(guò)焦點(diǎn)且與拋物線相交于、兩點(diǎn),過(guò)點(diǎn)、分別作拋物線的切線、,切線與相交于點(diǎn),求:的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)在橢圓上,為坐標(biāo)原點(diǎn),直線的斜率與直線的斜率乘積為.
(1)求橢圓的方程;
(2)不經(jīng)過(guò)點(diǎn)的直線(且)與橢圓交于,兩點(diǎn),關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)為(與點(diǎn)不重合),直線,與軸分別交于兩點(diǎn),,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)拋物線y2=8x的焦點(diǎn),作傾斜角為45°的直線,則被拋物線截得的弦長(zhǎng)為( )
A. 8 B. 16 C. 32 D. 64
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知點(diǎn),過(guò)點(diǎn)作直線、與圓:和拋物線:都相切.
(1)求拋物線的兩切線的方程;
(2)設(shè)拋物線的焦點(diǎn)為,過(guò)點(diǎn)的直線與拋物線相交于、兩點(diǎn),與拋物線的準(zhǔn)線交于點(diǎn)(其中點(diǎn)靠近點(diǎn)),且,求與的面積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,為梯形,,,,,,.
(1)在線段上有一個(gè)動(dòng)點(diǎn),滿(mǎn)足且平面,求實(shí)數(shù)的值;
(2)已知與的交點(diǎn)為,若,且平面,求二面角平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,,E為AB的中點(diǎn).將沿DE翻折,得到四棱錐.設(shè)的中點(diǎn)為M,在翻折過(guò)程中,有下列三個(gè)命題:
①總有平面;
②線段BM的長(zhǎng)為定值;
③存在某個(gè)位置,使DE與所成的角為90°.
其中正確的命題是_______.(寫(xiě)出所有正確命題的序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com