【題目】7本不同的書(shū):

1)全部分給6個(gè)人,每人至少一本,有多少種不同的分法?

2)全部分給5個(gè)人,每人至少一本,有多少種不同的分法?.

【答案】115120; 216800.

【解析】

1)根據(jù)題意,則分2步進(jìn)行①、將7本書(shū),分為6組,其中12本,其他組每組1本,②、將6組進(jìn)行全排列對(duì)應(yīng)6人即可;分別求出每一步的情況數(shù)目,由分步計(jì)數(shù)原理計(jì)算可得答案.

2)由題意知7本不同的書(shū)分給5個(gè)人,每人至少一本,并且全部分完,分兩種分法:一人得3本,其余4人各得一本;兩人各得2本,其余3人各得一本;分別求出再相加.

(1)根據(jù)題意,將7本書(shū)分給6個(gè)人,且每人至少一本,則必須是其中1個(gè)人2本,其他人每人1本,則分2步進(jìn)行

①、將7本書(shū),分為6組,其中1組2本,其他組每組1本,有種分組方法,

②、將分好的6組對(duì)應(yīng)6人,將6組進(jìn)行全排列即可,有種方法,

則一共有種不同的分法;

2)有兩類辦法:一人得3本,其余4人各得一本,方法數(shù)為 ;

兩人各得2本,其余3人各得一本,方法數(shù)為

所以所求方法種數(shù)為+=16800.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中正確的個(gè)數(shù)是_________.

1)命題“若,則方程有實(shí)數(shù)根”的逆否命題為“若方程無(wú)實(shí)數(shù)根,則.

2)命題“,”的否定“.

3)若為假命題,則,均為假命題.

4)“”是“直線與直線平行”的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(1)當(dāng)時(shí),求函數(shù)的單調(diào)減區(qū)間;

(2)若有三個(gè)不同的零點(diǎn),求的取值范圍;

(3)設(shè),若無(wú)極大值點(diǎn),有唯一的一個(gè)極小值點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)關(guān)于的方程有兩個(gè)實(shí)根,函數(shù).

(1)的值;

(2)判斷在區(qū)間的單調(diào)性,并加以證明;

(3)均為正實(shí)數(shù),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,為橢圓短軸的一個(gè)端點(diǎn),、為橢圓的左、右焦點(diǎn),線段的延長(zhǎng)線與橢圓相交于點(diǎn),且.

1)求橢圓的方程;

2)如圖,點(diǎn)為橢圓上一動(dòng)點(diǎn)(非長(zhǎng)軸端點(diǎn)),的延長(zhǎng)線與橢圓交于點(diǎn),的延長(zhǎng)線與橢圓交于點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】”是“直線與直線平行”的( )

A. 充要條件 B. 充分而不必要條件

C. 必要而不充分條件 D. 既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)若曲線在點(diǎn)處的切線與直線垂直,求實(shí)數(shù)的取值;

(Ⅱ)求函數(shù)的單調(diào)區(qū)間;

(Ⅲ)記.當(dāng)時(shí),函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某果園基地培育出一種特色水果,要在某一季節(jié)內(nèi)采摘一批這種水果銷往A市,每售出1噸這種水果獲利800元,未售出的水果每噸虧損400元,根據(jù)去年市場(chǎng)調(diào)研數(shù)據(jù)統(tǒng)計(jì),該季節(jié)A市對(duì)這種水果的市場(chǎng)需求量t(單位:噸,100≤t≤150)的頻率分布直方圖如圖所示.現(xiàn)該果園計(jì)劃采摘140噸這種水果運(yùn)往A市,經(jīng)銷這種水果的利潤(rùn)Q(單位:元)

(1)求Q關(guān)t的函數(shù)表達(dá)式;

(2)視頻率為概率,求利潤(rùn)Q的分布列及數(shù)學(xué)期望.(每組數(shù)據(jù)以區(qū)間的中點(diǎn)值為代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】最近上映的電影《后來(lái)的我們》引起了一陣熱潮,為了了解大眾對(duì)這部電影的評(píng)價(jià),隨機(jī)訪問(wèn)了50名觀影者,根據(jù)這50人對(duì)該電影的評(píng)分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為,,,,.

1)求頻率分布直方圖中的值,并估計(jì)觀影者對(duì)該電影評(píng)分不低于80的概率;

2)由頻率分布直方圖估計(jì)評(píng)分的中位數(shù)(保留兩位小數(shù))與平均數(shù);

3)從評(píng)分在的觀影者中隨機(jī)抽取2人,求至少有一人評(píng)分在的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案