如圖,幾何體中,四邊形為平行四邊形,且面,且,中點(diǎn).
(Ⅰ)證明:平面;
(Ⅱ)求直線與底面所成角的正弦值.
解:(Ⅰ)證明:因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202656771536.png" style="vertical-align:middle;" />,且OAC的中點(diǎn),所以. 
又由題意可知,平面平面,交線為,且平面,    
所以平面.                         ……..(5分)                    

(Ⅱ)如圖,過,交的延長(zhǎng)線于.因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202657067651.png" style="vertical-align:middle;" />,則底面,連,所以就是直線與底面所成角.又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202657192509.png" style="vertical-align:middle;" />,,所以.所以.                         ….. …….. …....(10分)      
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

正四面體ABCD的外接球的表面積為4π,則A與B兩點(diǎn)的球面距離為(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若點(diǎn)P直線l , 則由點(diǎn)P和直線l確定的平面的個(gè)數(shù)是    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若棱長(zhǎng)均為2的正三棱柱內(nèi)接于一個(gè)球,則該球的半徑為[]
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在平面幾何里,已知的兩邊互相垂直,且,則邊上的高;現(xiàn)在把結(jié)論類比到空間:三棱錐的三條側(cè)棱兩兩相互垂直,平面,且,則點(diǎn)到平面的距離    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

正四棱錐的側(cè)棱長(zhǎng)為,底面邊長(zhǎng)為,中點(diǎn),則異面直線所成的角是(   )
A.30° B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐中,底面,,的中點(diǎn).
(Ⅰ)求和平面所成的角的大;
(Ⅱ)證明平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖四棱錐,底面四邊形ABCD滿足條件,,側(cè)面SAD垂直于底面ABCD,,

(1)若SB上存在一點(diǎn)E,使得平面SAD,求的值;
(2)求此四棱錐體積的最大值;
(3)當(dāng)體積最大時(shí),求二面角A-SC-B大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

三棱錐中, , △是斜邊的等腰直角三角形, 則以下結(jié)論中: ① 異面直線所成的角為; ② 直線平面; ③ 面; ④ 點(diǎn)到平面的距離是. 其中正確結(jié)論的序號(hào)是 ______

查看答案和解析>>

同步練習(xí)冊(cè)答案