(本小題滿分12分)
在一次人才招聘會上,有三種不同的技工面向社會招聘,已知某技術人員應聘三種技工被錄用的概率分別是0.8、0.5、0.2(允許技工人員同時被多種技工錄用).
(1)求該技術人員被錄用的概率;
(2)設表示該技術人員被錄用的工種數(shù)與未被錄用的工種數(shù)的乘積,求的分布列和數(shù)學期望.
(1)0.92
(2)

本試題主要是考查了獨立事件概率的乘法公式的運用,以及分布列的求解和數(shù)學期望值的運用。
(1)因為某技術人員應聘三種技工被錄用的概率分別是0.8、0.5、0.2,因此相互獨立,所以該技術人員被錄用的概率即為運用對立事件概率的公式得到。
(2)由于隨機變量表示該技術人員被錄用的工種數(shù)與未被錄用的工種數(shù)的乘積,可知為0,2,然后得到各自的概率值,從而得到分布列和期望值。
解:(1) .                              …………6分
(2)

………………………………………………….12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

口袋里裝有7個大小相同小球, 其中三個標有數(shù)字1, 兩個標有數(shù)字2, 一個標有數(shù)字3, 一個標有數(shù)字4.
(Ⅰ) 第一次從口袋里任意取一球, 放回口袋里后第二次再任意取一球, 記第一次與第二次取到小球上的數(shù)字之和為. 當為何值時, 其發(fā)生的概率最大? 說明理由;
(Ⅱ) 第一次從口袋里任意取一球, 不再放回口袋里, 第二次再任意取一球, 記第一次與第二次取到小球上的數(shù)字之和為. 求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分10分)在1,2,3…,9,這9個自然數(shù)中,任取3個數(shù).
(Ⅰ)求這3個數(shù)中,恰有一個是偶數(shù)的概率;
(Ⅱ)記X為這三個數(shù)中兩數(shù)相鄰的組數(shù),(例如:若取出的數(shù)1、2、3,則有兩組相鄰的數(shù)1、2和2、3,此時X的值是2)。求隨機變量X的分布列及其數(shù)學期望EX.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
有編號為l,2,3,…,個學生,入坐編號為1,2,3,…,個座位.每個學生規(guī)定坐一個座位,設學生所坐的座位號與該生的編號不同的學生人數(shù)為,已知時,共有6種坐法.
(1)求的值;
(2)求隨機變量的概率分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分) 一盒中裝有分別標記著1,2,3,4的4個小球,每次從袋中取出一只球,設每只小球被取出的可能性相同.
(1)若每次取出的球不放回盒中,現(xiàn)連續(xù)取三次球,求恰好第三次取出的球的標號為最大數(shù)字的球的概率;
(2)若每次取出的球放回盒中,然后再取出一只球,現(xiàn)連續(xù)取三次球,這三次取出的球中標號最大數(shù)字為,求的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

甲同學在軍訓中,練習射擊項目,他射擊命中目標的概率是,假設每次射擊是否命中相互之間沒有影響.
(Ⅰ)在3次射擊中,求甲至少有1次命中目標的概率;
(Ⅱ)在射擊中,若甲命中目標,則停止射擊,否則繼續(xù)射擊,直至命中目標,但射擊次數(shù)最多不超過3次,求甲射擊次數(shù)的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某工廠生產甲、乙兩種產品,甲產品的一等品率為,二等品率為;乙產品的一等品率為,二等品率為.生產件甲產品,若是一等品,則獲利萬元,若是二等品,則虧損萬元;生產件乙產品,若是一等品,則獲利萬元,若是二等品,則虧損
元.兩種產品生產的質量相互獨立.
(Ⅰ)設生產件甲產品和件乙產品可獲得的總利潤為(單位:萬元),求的分布列;
(Ⅱ)求生產件甲產品所獲得的利潤不少于萬元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

甲乙兩隊參加奧運知識競賽,每隊三人,每人回答一個問題,答對者為本隊贏得一分,答錯得零分.假設甲隊中每人答對的概率均為,乙隊中三人答對的概率分別為,且各人回答得正確與否相互之間沒有影響.
(1)若用表示甲隊的總得分,求隨機變量分布列和數(shù)學期望;
(2)用表示事件“甲、乙兩隊總得分之和為”,用表示事件“甲隊總得分大于乙隊總得分”,求.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,一個小球從M處投入,通過管道自上而下落ABC。已知小球從每個叉口落入左右兩個 管道的可能性是相等的.某商家按上述投球方式進行促銷活動,若投入的小球落到A,B,C,則分別設為l,

2,3等獎.(I)已知獲得l,2,3等獎的折扣率分別為50%,70%,90%.記隨變量為獲得k(k=1,2,3)等獎的折扣率,求隨機變量的分布列及期望;(II)若有3人次(投入l球為l人次)參加促銷活動,記隨機變量為獲得1等獎或2等獎的人次,求

查看答案和解析>>

同步練習冊答案