【題目】已知直線與拋物線:交于,兩點,且的面積為16(為坐標原點).
(1)求的方程.
(2)直線經過的焦點且不與軸垂直,與交于,兩點,若線段的垂直平分線與軸交于點,試問在軸上是否存在點,使為定值?若存在,求該定值及的坐標;若不存在,請說明理由.
科目:高中數學 來源: 題型:
【題目】已知各項均為正整數的數列{an}的前n項和為Sn,滿足:Sn﹣1+kan=tan2﹣1,n≥2,n∈N*(其中k,t為常數).
(1)若k=,t=,數列{an}是等差數列,求a1的值;
(2)若數列{an}是等比數列,求證:k<t.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某書店銷售剛剛上市的某高二數學單元測試卷,按事先擬定的價格進行5天試銷,每種單價試銷1天,得到如下數據:
單價x/元 | 18 | 19 | 20 | 21 | 22 |
銷量y/冊 | 61 | 56 | 50 | 48 | 45 |
(1)求試銷天的銷量的方差和關于的回歸直線方程;
附: .
(2)預計以后的銷售中,銷量與單價服從上題中的回歸直線方程,已知每冊單元測試卷的成本是10元,為了獲得最大利潤,該單元測試卷的單價應定為多少元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在極坐標系中,曲線的方程為,以極點為原點,極軸所在直線為軸建立直角坐標,直線的參數方程為(為參數),與交于,兩點.
(1)寫出曲線的直角坐標方程和直線的普通方程;
(2)設點;若、、成等比數列,求的值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線的兩個焦點為點在雙曲線C上.
(1)求雙曲線C的方程;
(2)已知Q(0,2),P為雙曲線C上的動點,點M滿足求動點M的軌跡方程;
(3)過點Q(0,2)的直線與雙曲線C相交于不同的兩點E、F,若求直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,曲線C1的參數方程為(α為參數),曲線C2的方程為(x-1)2+(y-1)2=2.
(1)在以O為極點,x軸的正半軸為極軸建立極坐標系,求曲線C1,C2的極坐標方程;
(2)直線θ=β(0<β<π)與C1的異于極點的交點為A,與C2的異于極點的交點為B,求|AB|的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線過點,是拋物線上異于點的不同兩點,且以線段為直徑的圓恒過點.
(I)當點與坐標原點重合時,求直線的方程;
(II)求證:直線恒過定點,并求出這個定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校學生社團組織活動豐富,學生會為了解同學對社團活動的滿意程度,隨機選取了100位同學進行問卷調查,并將問卷中的這100人根據其滿意度評分值(百分制)按照[40,50),[50,60),[60,70),…,[90,100]分成6組,制成如圖所示頻率分布直方圖.
(1)求圖中x的值;
(2)求這組數據的中位數;
(3)現從被調查的問卷滿意度評分值在[60,80)的學生中按分層抽樣的方法抽取5人進行座談了解,再從這5人中隨機抽取2人作主題發(fā)言,求抽取的2人恰在同一組的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com