(本題滿(mǎn)分14分)
已知橢圓=1(a>b>0)的左右頂點(diǎn)為,上下頂點(diǎn)為, 左右焦點(diǎn)為,若為等腰直角三角形(1)求橢圓的離心率(2)若的面積為6,求橢圓的方程
(1)                     (2)
本試題主要是考查了橢圓的性質(zhì)和三角形面積以及橢圓方程的求解的綜合運(yùn)用。
(1)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234908335596.png" style="vertical-align:middle;" />為等腰直角三角形,那么可知a,b的關(guān)系式,進(jìn)而得到離心率。
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234908350591.png" style="vertical-align:middle;" />的面積為6,那么結(jié)合離心率公式得到橢圓的方程。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知離心率為的橢圓過(guò)點(diǎn),為坐標(biāo)原點(diǎn),平行于的直線交橢圓于不同的兩點(diǎn)。

(1)求橢圓的方程。
(2)證明:若直線的斜率分別為、,求證:+=0。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓的兩焦點(diǎn)是,則其焦距長(zhǎng)為            ,若點(diǎn)是橢圓上一點(diǎn),且 是直角三角形,則的大小是            .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)橢圓的離心率為,焦點(diǎn)在x軸上且長(zhǎng)軸長(zhǎng)為30.若曲線上的點(diǎn)到橢圓的兩個(gè)焦點(diǎn)的距離的差的絕對(duì)值等于10,則曲線的標(biāo)準(zhǔn)方程為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

直線y=x+3與曲線=1交點(diǎn)的個(gè)數(shù)為_(kāi)__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如果方程表示焦點(diǎn)在軸上的橢圓,則實(shí)數(shù)的取值范圍是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓的一個(gè)焦點(diǎn)坐標(biāo)為,那么的值為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)橢圓()的左焦點(diǎn)軸的垂線交橢圓于點(diǎn),為右焦點(diǎn),若,則橢圓的離心率為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分14分)已知橢圓的右頂點(diǎn),過(guò)的焦點(diǎn)且垂直長(zhǎng)軸的弦長(zhǎng)為.
(I) 求橢圓的方程;
(II) 設(shè)點(diǎn)在拋物線上,在點(diǎn)處的切線與交于點(diǎn).當(dāng)線段的中點(diǎn)與的中點(diǎn)的橫坐標(biāo)相等時(shí),求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案