(選修4-4坐標(biāo)系與參數(shù)方程)已知極坐標(biāo)的極點(diǎn)在直角坐標(biāo)系的原點(diǎn)O處,極軸與x軸的正半軸重合,曲線C的參數(shù)方程為
x=cosθ
y=sinθ
(θ為參數(shù)),直線l的極坐標(biāo)方程為ρcos(θ-
π
3
)=6
.則直線與曲線C的位置關(guān)系為
相離
相離
分析:求出曲線C的普通方程為x2+y2=1,直線l的直角坐標(biāo)方程為x+
3
y-12=0,根據(jù)圓心到直線的距離,得到直線與曲線C的位置關(guān)系.
解答:解:由曲線C的參數(shù)方程為
x=cosθ
y=sinθ
,得x2+y2=1,
∴曲線C的普通方程為x2+y2=1
由直線l的極坐標(biāo)方程為ρcos(θ-
π
3
)=6
,
可得ρcosθcos
π
3
+ρsinθsin
π
3
=6,
1
2
x+
3
2
y=6,∴直線l的直角坐標(biāo)方程為x+
3
y-12=0
∵圓C的圓心為(0,0),半徑為1,
∴d=
|0+0-12|
12+(
3
)2
=6>1

∴直線與曲線C的位置關(guān)系為相離.
故答案為:相離.
點(diǎn)評(píng):本題主要考查把參數(shù)方程化為普通方程的方法,把極坐標(biāo)方程化為直角坐標(biāo)方程的方法,以及直線與圓位置關(guān)系的判斷方法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(選修4-4坐標(biāo)系與參數(shù)方程)在極坐標(biāo)系中,圓C的圓心C(3,
π6
)
,半徑r=6.
(1)寫出圓C的極坐標(biāo)方程;
(2)若Q點(diǎn)在圓C上運(yùn)動(dòng),P在OQ的延長線上,且OQ:QP=3:2,求動(dòng)點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

附加題:(選做題:在下面A、B、C、D四個(gè)小題中只能選做兩題)
A.選修4-1:幾何證明選講
如圖,已知AB、CD是圓O的兩條弦,且AB是線段CD的垂直平分線,
已知AB=6,CD=2
5
,求線段AC的長度.
B.選修4-2:矩陣與變換
已知二階矩陣A有特征值λ1=1及對(duì)應(yīng)的一個(gè)特征向量e1=
1
1
和特征值λ2=2及對(duì)應(yīng)的一個(gè)特征向量e2=
1
0
,試求矩陣A.
C.選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程是
y=sinθ+1
x=cosθ
(θ是參數(shù)),若以O(shè)為極點(diǎn),x軸的正半軸為極軸,取與直角坐標(biāo)系中相同的單位長度,建立極坐標(biāo)系,求曲線C的極坐標(biāo)方程.
D.選修4-5:不等式選講
已知關(guān)于x的不等式|ax-1|+|ax-a|≥1(a>0).
(1)當(dāng)a=1時(shí),求此不等式的解集;
(2)若此不等式的解集為R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-4坐標(biāo)系與參數(shù)方程
已知直線l過定點(diǎn)P(-3,-
3
2
)
與圓C:
x=5cosθ
y=5sinθ
(θ為參數(shù))
相交于A、B兩點(diǎn).
求:(1)若|AB|=8,求直線l的方程;
(2)若點(diǎn)P(-3,-
3
2
)
為弦AB的中點(diǎn),求弦AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(考生注意:請(qǐng)?jiān)谙铝卸}中任選一題作答,如果多做,則按所做的第一題評(píng)閱記分.)
(A)(選修4-4坐標(biāo)系與參數(shù)方程)曲線
x=cosα
y=a+sinα
(α為參數(shù))與曲線ρ2-2ρcosθ=0的交點(diǎn)個(gè)數(shù)為
 
個(gè).
(B)(選修4-5不等式選講)若不等式|x+1|+|x-3| ≥a+
4
a
對(duì)任意的實(shí)數(shù)x恒成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:陜西省西工大附中2010屆高三第五次適應(yīng)性訓(xùn)練(理) 題型:填空題

 (請(qǐng)考生在以下三個(gè)小題中任選一題做答,如果多做,則按所做 

的第一題評(píng)閱記分)

   (1)(選修4—4坐標(biāo)系與參數(shù)方程)已知曲線C的極坐標(biāo)方程

.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x

軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是,

則直線與曲線C相交所得的弦長為        

   (2)(選修4—5 不等式選講)已知,且   

,則的最小值為       

   (3)(選修4—1 幾何證明選講)如圖:若,

        ,交于點(diǎn)D,

,,則          

 

查看答案和解析>>

同步練習(xí)冊(cè)答案