已知二次函數(shù)f(x)滿足f(x+1)-f(x)=2x,f(0)=1.
(1)求f(x)的解析式;
(2)求y=f(x)在[-1,1]上的最大值.
分析:(1)由于已知函數(shù)類型為二次函數(shù),故可以使用待定系數(shù)法求函數(shù)f(x)的解析式;
(2)根據(jù)(1)的結(jié)論,分析二次函數(shù)的開口方向及對稱軸與區(qū)間[-1,1]的關(guān)系,易得y=f(x)在[-1,1]上的最大值.
解答:解:(1)設(shè)f(x)=ax2+bx+c
∵f(x+1)-f(x)=2x,
∴a(x+1)2+b(x+1)+c-(ax2+bx+c)=2x
即:
2a=2
a+b=0

即a=1,b=-1
又由f(0)=1.
得:c=1
∴f(x)=x2-x+1
(2)由(1)知,函數(shù)f(x)=x2-x+1的圖象為
開口方向朝上,以x=
1
2
為對稱軸的拋物線
故在區(qū)間[-1,1]上,當(dāng)x=-1時,
函數(shù)取最大值f(-1)=3
點(diǎn)評:求解析式的幾種常見方法:①代入法:即已知f(x),g(x),求f(g(x))用代入法,只需將g(x)替換f(x)中的x即得;②換元法:已知f(g(x)),g(x),求f(x)用換元法,令g(x)=t,解得x=g-1(t),然后代入f(g(x))中即得f(t),從而求得f(x).當(dāng)f(g(x))的表達(dá)式較簡單時,可用“配湊法”;③待定系數(shù)法:當(dāng)函數(shù)f(x)類型確定時,可用待定系數(shù)法.④方程組法:方程組法求解析式的實(shí)質(zhì)是用了對稱的思想.一般來說,當(dāng)自變量互為相反數(shù)、互為倒數(shù)或是函數(shù)具有奇偶性時,均可用此法.在解關(guān)于f(x)的方程時,可作恰當(dāng)?shù)淖兞看鷵Q,列出f(x)的方程組,求得f(x).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2+2(m-2)x+m-m2
(I)若函數(shù)的圖象經(jīng)過原點(diǎn),且滿足f(2)=0,求實(shí)數(shù)m的值.
(Ⅱ)若函數(shù)在區(qū)間[2,+∞)上為增函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過點(diǎn)(0,1),且與x軸有唯一的交點(diǎn)(-1,0).
(Ⅰ)求f(x)的表達(dá)式;
(Ⅱ)設(shè)函數(shù)F(x)=f(x)-kx,x∈[-2,2],記此函數(shù)的最小值為g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2-16x+q+3.
(1)若函數(shù)在區(qū)間[-1,1]上存在零點(diǎn),求實(shí)數(shù)q的取值范圍;
(2)若記區(qū)間[a,b]的長度為b-a.問:是否存在常數(shù)t(t≥0),當(dāng)x∈[t,10]時,f(x)的值域為區(qū)間D,且D的長度為12-t?請對你所得的結(jié)論給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣州一模)已知二次函數(shù)f(x)=x2+ax+m+1,關(guān)于x的不等式f(x)<(2m-1)x+1-m2的解集為(m,m+1),其中m為非零常數(shù).設(shè)g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值時,函數(shù)φ(x)=g(x)-kln(x-1)存在極值點(diǎn),并求出極值點(diǎn);
(3)若m=1,且x>0,求證:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知二次函數(shù)f(x)的圖象與x軸的兩交點(diǎn)為(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函數(shù)f(x)的圖象的頂點(diǎn)是(-1,2),且經(jīng)過原點(diǎn),求f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊答案