【題目】已知函數(shù).
(1)判斷函數(shù)的奇偶性并證明;
(2)當時,求函數(shù)的值域.
【答案】(1)奇函數(shù),(2).
【解析】
試題分析:(1)判斷函數(shù)奇偶性,從兩個方面入手,一要判斷定義域,若定義域不關于原點對稱,則函數(shù)就為非奇非偶函數(shù),二在函數(shù)定義域關于原點對稱前提下,判斷與的關系,如只相等,則為偶函數(shù),如只相反,則為奇函數(shù),如既相等又相反,則既為奇函數(shù)又為偶函數(shù),如既不相等又不相反,則為非奇非偶函數(shù),本題定義域為R,研究與的關系時需將負指數(shù)化為對應正指數(shù)的倒數(shù),(2)研究函數(shù)的值域,一要看函數(shù)解析式的結構,本題是可化為型,二是結合定義域利用函數(shù)單調性求值域.
試題解析:(1)∵,
, 4分
∴是奇函數(shù). 5分
(2)令,則. 7分
∵,∴,∴,∴,
所以的值域是. 10分
科目:高中數(shù)學 來源: 題型:
【題目】已知圓的方程為: 。
(1)求圓的圓心所在直線方程一般式;
(2)若直線被圓截得弦長為,試求實數(shù)的值;
(3)已知定點,且點是圓上兩動點,當可取得最大值為時,求滿足條件的實數(shù)的值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】阿波羅尼斯是古希臘著名數(shù)學家,與歐幾里得、阿基米德被稱為亞歷山大時期數(shù)學三巨匠,他對圓錐曲線有深刻而系統(tǒng)的研究,主要研究成果集中在他的代表作《圓錐曲線》一書,阿波羅尼斯圓是他的研究成果之一,指的是:已知動點M與兩定點A、B的距離之比為λ(λ>0,λ≠1),那么點M的軌跡就是阿波羅尼斯圓.下面,我們來研究與此相關的一個問題.已知圓:x2+y2=1和點 ,點B(1,1),M為圓O上動點,則2|MA|+|MB|的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】過點(0,2)的直線l與中心在原點,焦點在x軸上且離心率為 的橢圓C相交于A、B兩點,直線 過線段AB的中點,同時橢圓C上存在一點與右焦點關于直線l對稱.
(1)求直線l的方程;
(2)求橢圓C的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖, 是圓柱的母線, 是的直徑, 是底面圓周上異于的任意一點, , .
(1)求證:
(2)當三棱錐的體積最大時,求與平面所成角的大。
(3)上是否存在一點,使二面角的平面角為45°?若存在,求出此時的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線 的離心率為e,經(jīng)過第一、三象限的漸近線的斜率為k,且e≥ k.
(1)求m的取值范圍;
(2)設條件p:e≥ k;條件q:m2﹣(2a+2)m+a(a+2)≤0.若p是q的必要不充分條件,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,三棱柱A1B1C1﹣ABC的側棱AA1⊥底面ABC,AB⊥AC,AB=AA1 , D是棱CC1的中點.
(Ⅰ)證明:平面AB1C⊥平面A1BD;
(Ⅱ)在棱A1B1上是否存在一點E,使C1E∥平面A1BD?并證明你的結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱中, 平面, , 在線段上, , .
(1)求證: ;
(2)試探究:在上是否存在點,滿足平面,若存在,請指出點的位置,并給出證明;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com