【題目】了解某校學(xué)生的視力情況,現(xiàn)采用隨機(jī)抽樣的方從該校的班中各抽5名學(xué)生進(jìn)行視力檢測(cè),檢測(cè)的數(shù)據(jù)如下:

班5名學(xué)生的視力檢測(cè)結(jié)果是:.

班5名學(xué)生的視力檢測(cè)結(jié)果是:.

1分別計(jì)算兩組數(shù)據(jù)的平均數(shù),從計(jì)算結(jié)果看,哪個(gè)班的學(xué)生視力較好?并計(jì)算5名學(xué)生視力的方差;

(2)現(xiàn)上述5名學(xué)生中隨機(jī)選取2名,求這2名學(xué)生中至少有1名學(xué)生的視力低于概率.

【答案】(1)班學(xué)生視力,;(2).

【解析】

試題分析:此題主要考查樣本數(shù)據(jù)特征數(shù)的應(yīng)用,以及古典概型的概率計(jì)算,屬于中低檔題.(1)根據(jù)題意分別算出兩個(gè)班學(xué)生的視力平均數(shù),,,由于,所以班學(xué)生視力好;由樣本數(shù)據(jù)方差的計(jì)算公式即可算出名學(xué)生視力的方差為;(2)根據(jù)名學(xué)生視力的數(shù)據(jù),從中隨機(jī)選取名,則選取的結(jié)果有:,,,,個(gè)基本事件,其中至少有學(xué)生的視力不低于基本事件有個(gè),故所求概率.

試題解析:1)班5名學(xué)生的視力平均數(shù)為,

班5名學(xué)生的視力平均數(shù)為.………………3

從數(shù)據(jù)結(jié)果來(lái)看班學(xué)生視力.……………………………………4

.………………6

2)從的上述5名學(xué)生中隨機(jī)選取2名,則這兩名學(xué)生視力檢測(cè)結(jié)果有:

,,,共10個(gè)基本事件,…………………………9

其中2名學(xué)生中至少有1名學(xué)生的視力不低于基本事件有7個(gè),則求概率.…………12

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),為自然對(duì)數(shù)的底數(shù),且曲線(xiàn)在坐標(biāo)原點(diǎn)處的切線(xiàn)相同.

1的最小值;

2時(shí),恒成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知甲、乙兩煤礦每年的產(chǎn)量分別為200萬(wàn)噸和300萬(wàn)噸,需經(jīng)過(guò)東車(chē)站和西車(chē)站兩個(gè)車(chē)站運(yùn)往外地,東車(chē)站每年最多能運(yùn)280萬(wàn)噸煤,西車(chē)站每年最多能運(yùn)360萬(wàn)噸煤,甲煤礦運(yùn)往東車(chē)站和西車(chē)站的運(yùn)費(fèi)價(jià)格分別為1/噸和1.5/噸,乙煤礦運(yùn)往東車(chē)站和西車(chē)站的運(yùn)費(fèi)價(jià)格分別為0.8/噸和1.6/噸.要使總運(yùn)費(fèi)最少,煤礦應(yīng)怎樣編制調(diào)運(yùn)方案?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求函數(shù)的最大值;

2)函數(shù)軸交于兩點(diǎn),證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐,底面矩形,,分別中點(diǎn).

(1)求證:;

(2)已知點(diǎn)中點(diǎn),點(diǎn)一動(dòng)點(diǎn),當(dāng)何值時(shí),平面?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為為參數(shù),,在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線(xiàn).

1求曲線(xiàn)的普通方程,并將的方程化為極坐標(biāo)方程;

2直線(xiàn)的極坐標(biāo)方程為,其中滿(mǎn)足,若曲線(xiàn)的公共點(diǎn)都在上,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校100名學(xué)生期中考試數(shù)學(xué)成績(jī)的頻率分布直方圖如圖,其中成績(jī)分組區(qū)間如下:

組號(hào)

第一組

第二組

第三組

第四組

第五組

分組

(1)求圖中的值;

(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生期中考試數(shù)學(xué)成績(jī)的平均分;

(3)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機(jī)抽取6名學(xué)生,將該樣本看成一個(gè)總體,從中隨機(jī)抽取2名,求其中恰有1人的分?jǐn)?shù)不低于90分的概率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)據(jù)是鄭州市普通職工個(gè)人的年收入,若這個(gè)數(shù)據(jù)的中位數(shù)為,平均數(shù)為,方差為,如果再加上世界首富的年收入,則這個(gè)數(shù)據(jù)中,下列說(shuō)法正確的是( )

A. 年收入平均數(shù)大大增大,中位數(shù)一定變大,方差可能不變

B. 年收入平均數(shù)大大增大,中位數(shù)可能不變,方差變大

C. 年收入平均數(shù)大大增大,中位數(shù)可能不變,方差也不變

D. 年收入平均數(shù)可能不變,中位數(shù)可能不變,方差可能不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某山區(qū)外圍有兩條相互垂直的直線(xiàn)型公路,為進(jìn)一步改善山區(qū)的交通現(xiàn)狀,計(jì)劃修建一條連接兩條公路和山區(qū)邊界的直線(xiàn)型公路記兩條相互垂直的公路為,山區(qū)邊界曲線(xiàn)為計(jì)劃修建的公路為,如圖所示,的兩個(gè)端點(diǎn),測(cè)得點(diǎn)的距離分別為5千米40千米,點(diǎn)的距離分別為20千米和25千米,以所在直線(xiàn)分別為軸,建立平面直角坐標(biāo)系假設(shè)曲線(xiàn)符合函數(shù)其中為常數(shù)模型

1的值;

2設(shè)公路與曲線(xiàn)相切于點(diǎn),的橫坐標(biāo)為

請(qǐng)寫(xiě)出公路長(zhǎng)度的函數(shù)解析式,并寫(xiě)出其定義域;

當(dāng)為何值時(shí),公路的長(zhǎng)度最短?求出最短長(zhǎng)度

查看答案和解析>>

同步練習(xí)冊(cè)答案