21、已知函數(shù)f (x)的定義域是(0,+∞),滿足f(2)=1,且對(duì)于定義域內(nèi)任意x,y都有f(xy)=f(x)+f(y)成立,那么f(1)+f(4)=
2
分析:由f(1)=f(1×1)=f(1)+f(1)=2f(1),可得 f(1)=0,同理可得 f(4)=2,從而得到所求.
解答:解:f(1)=f(1×1)=f(1)+f(1)=2f(1),
∴f(1)=0.
f(4)=f(2×2)=f(2)+f(2)=2,
∴f(1)+f(4)=0+2=2,
故答案為2.
點(diǎn)評(píng):本題考查抽象函數(shù)的應(yīng)用,求出f(1)=0 和f(4)=2,是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域?yàn)閇-1,5],部分對(duì)應(yīng)值如下表.
x -1 0 2 4 5
f(x) 1 2 0 2 1
f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示.下列關(guān)于函數(shù)f(x)的命題:
①函數(shù)f(x)在[0,1]上是減函數(shù);
②如果當(dāng)x∈[-1,t]時(shí),f(x)最大值是2,那么t的最大值為4;
③函數(shù)y=f(x)-a有4個(gè)零點(diǎn),則1≤a<2;
④已知(a,b)是y=
2013
f(x)
的一個(gè)單調(diào)遞減區(qū)間,則b-a的最大值為2.
其中真命題的個(gè)數(shù)是
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域?yàn)锳,若其值域也為A,則稱區(qū)間A為f(x)的保值區(qū)間.若g(x)=-x+m+ex的保值區(qū)間為[0,+∞),則m的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域是R,若f(x)是奇函數(shù),0≤x<1時(shí),f(x)=
1
2
x
,且滿足f(x+2)=f(x).
(1)寫出f(x)的周期.
(2)求-1≤x≤0時(shí),f(x)的解析式.
(3)求1<x<3時(shí),f(x)的解析式.
(4)求使f(x)=-
1
2
成立所有x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的部分圖象如圖所示,則f(x)的解析式可能為(  )
精英家教網(wǎng)
A、f(x)=2sin(
x
2
+
π
6
B、f(x)=
2
sin(4x+
π
4
C、f(x)=2sin(
x
2
-
π
6
D、f(x)=
2
sin(4x-
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域?yàn)閇-3,+∞),部分函數(shù)值如表所示,其導(dǎo)函數(shù)的圖象如圖所示,若正數(shù)a,b滿足f(2a+b)<1,則
b+2
a+2
的取值范圍是
2
5
,4)
2
5
,4)
;
x -3 0 6
f(x) 1 -1 1

查看答案和解析>>

同步練習(xí)冊(cè)答案