【題目】某校研究性學(xué)習(xí)小組從汽車市場上隨機抽取輛純電動汽車調(diào)查其續(xù)駛里程(單次充電后能行駛的最大里程),被調(diào)查汽車的續(xù)駛里程全部介于公里和公里之間,將統(tǒng)計結(jié)果分成組:,,,,,繪制成如圖所示的頻率分布直方圖.
(1)求直方圖中的值;
(2)求輛純電動汽車?yán)m(xù)駛里程的中位數(shù);
(3)若從續(xù)駛里程在的車輛中隨機抽取輛車,求其中恰有一輛車的續(xù)駛里程為的概率.
【答案】(1)(2)(3)
【解析】
(1)利用小矩形的面積和為,求得值,即可求得答案;
(2)中位數(shù)的計算方法為:把頻率分布直方圖分成兩個面積相等部分的平行于軸的直線橫坐標(biāo),即可求得答案;
(3)據(jù)直方圖求出續(xù)駛里程在和續(xù)駛里程在的車輛數(shù),利用排列組合和概率公式求出其中恰有一輛車的續(xù)駛里程在的概率,即可求得答案.
(1)由直方圖可得:
(2)根據(jù)中位數(shù)的計算方法為:把頻率分布直方圖分成兩個面積相等部分的平行于軸的直線橫坐標(biāo).
直方圖可得:
可得:
輛純電動汽車?yán)m(xù)駛里程的中位數(shù).
(3) 續(xù)駛里程在的車輛數(shù)為:
續(xù)駛里程在第五組的車輛數(shù)為.
從輛車中隨機抽取輛車,共有中抽法,
其中恰有一輛車的續(xù)駛里程在的抽法有種,
其中恰有一輛車的續(xù)駛里程在的概率為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了引導(dǎo)居民合理用電,國家決定實行合理的階梯電價,居民用電原則上以住宅為單位(一套住宅為一戶).
某市隨機抽取10戶同一個月的用電情況,得到統(tǒng)計表如下:
(1)若規(guī)定第一階梯電價每度0.5元,第二階梯超出第一階梯的部分每度0.6元,第三階梯超出第二階梯每度0.8元,試計算居民用電戶用電410度時應(yīng)交電費多少元?
(2)現(xiàn)要在這10戶家庭中任意選取3戶,求取到第二階梯電量的戶數(shù)的分布列與期望;
(3)以表中抽到的10戶作為樣本估計全市居民用電,現(xiàn)從全市中依次抽取10戶,若抽到戶用電量為第一階梯的可能性最大,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,是矩形,平面,,,四棱錐外接球的球心為,點是棱上的一個動點.給出如下命題:①直線與直線所成的角中最小的角為;②與一定不垂直;③三棱錐的體積為定值;④的最小值為.其中正確命題的序號是__________.(將你認(rèn)為正確的命題序號都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(且).
(1)求函數(shù)的定義域,并求出當(dāng)時,常數(shù)的值;
(2)在(1)的條件下,判斷函數(shù)在的單調(diào)性,并用單調(diào)性定義證明;
(3)設(shè),若方程有實根,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為:(為參數(shù)),以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為:.
(Ⅰ)求直線與曲線公共點的極坐標(biāo);
(Ⅱ)設(shè)過點的直線交曲線于,兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】每年五月最受七中學(xué)子期待的學(xué)生活動莫過于學(xué)生節(jié),在每屆學(xué)生節(jié)活動中,著七中校服的布偶“七中熊”尤其受同學(xué)和老師歡迎.已知學(xué)生會將在學(xué)生節(jié)當(dāng)天售賣“七中熊”,并且會將所獲得利潤全部捐獻于公益組織.為了讓更多同學(xué)知曉,學(xué)生會宣傳部需要前期在學(xué)校張貼海報宣傳,成本為250元,并且當(dāng)學(xué)生會向廠家訂制只“七中熊”時,需另投入成本,(元),.通過市場分析, 學(xué)生會訂制的“七中熊”能全部售完.若學(xué)生節(jié)當(dāng)天,每只“七中熊”售價為70元,則當(dāng)銷量為______只時,學(xué)生會向公益組織所捐獻的金額會最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正項數(shù)列:,滿足:是公差為的等差數(shù)列,是公比為2的等比數(shù)列.
(1)若,求數(shù)列的所有項的和;
(2)若,求的最大值;
(3)是否存在正整數(shù),滿足?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知遞增數(shù)列{an}前n項和為Sn,且滿足a1=3,4Sn﹣4n+1=an2,設(shè)bn(n∈N*)且數(shù)列{bn}的前n項和為Tn
(Ⅰ)求證:數(shù)列{an}為等差數(shù)列;
(Ⅱ)若對任意的n∈N*,不等式λTnn(﹣1)n+1恒成立,求實數(shù)λ的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com