【題目】近年來,我國(guó)電子商務(wù)蓬勃發(fā)展,有關(guān)部門推出了針對(duì)網(wǎng)購平臺(tái)的商品和服務(wù)的評(píng)價(jià)系統(tǒng),從該系統(tǒng)中隨機(jī)選出100名交易者,并對(duì)其交易評(píng)價(jià)進(jìn)行了統(tǒng)計(jì),網(wǎng)購者對(duì)商品的滿意率為0.6,對(duì)服務(wù)的滿意率為0.75,其中對(duì)商品和服務(wù)都滿意的有40人.
(1)根據(jù)已知條件完成下面的列聯(lián)表,并回答能否有的把握認(rèn)為“網(wǎng)購者對(duì)服務(wù)滿意與對(duì)商品滿意之間有關(guān)”?
對(duì)服務(wù)滿意 | 對(duì)服務(wù)不滿意 | 合計(jì) | |
對(duì)商品滿意 | |||
對(duì)商品不滿意 | |||
合計(jì) |
(2)若對(duì)商品和服務(wù)都不滿意者的集合為.已知中有2名男性,現(xiàn)從中任取2人調(diào)查其意見.求取到的2人恰好是一男一女的概率.
附: (其中為樣本容量)
【答案】(1)沒有的把握認(rèn)為“網(wǎng)購者對(duì)服務(wù)滿意與對(duì)商品滿意之間有關(guān)”;(2).
【解析】試題分析:(1)根據(jù)題設(shè)中的數(shù)據(jù),填寫的列聯(lián)表,利用公式求解的值,根據(jù)附表即可作出判斷;
(2)由題意中有男 女,記作,從中任取人,得到基本事件的總數(shù)為種,其中“一男一女”共有種,利用古典概型的概率計(jì)算公式,即可求解相應(yīng)的概率.
試題解析:
(1)
∴沒有的把握認(rèn)為“網(wǎng)購者對(duì)服務(wù)滿意與對(duì)商品滿意之間有關(guān)”.
(2)中有2男3女,記作,從中任取2人,有,共10種情形,其中“一男一女”有,共6種情形,∴其概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在空間中,過點(diǎn)A作平面π的垂線,垂足為B,記B=fπ(A).設(shè)α,β是兩個(gè)不同的平面,對(duì)空間任意一點(diǎn)P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2,則( 。
A.平面α與平面β垂直
B.平面α與平面β所成的(銳)二面角為45°
C.平面α與平面β平行
D.平面α與平面β所成的(銳)二面角為60°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的離心率為,橢圓C的四個(gè)頂點(diǎn)圍成的四邊形的面積為.
求橢圓C的方程;
直線l與橢圓C交于,兩個(gè)不同點(diǎn),O為坐標(biāo)原點(diǎn),若的面積為,證明:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“活水圍網(wǎng)”養(yǎng)魚技術(shù)具有養(yǎng)殖密度高、經(jīng)濟(jì)效益好的特點(diǎn).研究表明:“活水圍網(wǎng)”養(yǎng)魚時(shí),某種魚在一定的條件下,每尾魚的平均生長(zhǎng)速度(單位:千克/年)是養(yǎng)殖密度(單位:尾/立方米)的函數(shù).當(dāng)時(shí),的值為2千克/年;當(dāng)時(shí),是的一次函數(shù);當(dāng)時(shí),因缺氧等原因,的值為0千克/年.
(1)當(dāng)時(shí),求關(guān)于的函數(shù)表達(dá)式.
(2)當(dāng)養(yǎng)殖密度為多少時(shí),魚的年生長(zhǎng)量(單位:千克/立方米)可以達(dá)到最大?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=g(x)=f(x)+x-6lnx,其中R.
(1)當(dāng)=1時(shí),判斷f(x)的單調(diào)性;
(2)當(dāng)=2時(shí),求出g(x)在(0,1)上的最大值;
(3)設(shè)函數(shù)當(dāng)=2時(shí),若總有成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,且過點(diǎn)
求橢圓的標(biāo)準(zhǔn)方程;
設(shè)直線l:與橢圓在第一象限的交點(diǎn)為M,過點(diǎn)F且斜率為的直線與l交于點(diǎn)N,若與的面積之比為3:為坐標(biāo)原點(diǎn),求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,一動(dòng)圓與直線相切且與圓外切.
(1)求動(dòng)圓圓心的軌跡的方程;
(2)過作直線,交(1)中軌跡于兩點(diǎn),若中點(diǎn)的縱坐標(biāo)為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一只小蜜蜂位于數(shù)軸上的原點(diǎn)處,小蜜蜂每一次具有只向左或只向右飛行一個(gè)單位或者兩個(gè)單位距離的能力,且每次飛行至少一個(gè)單位.若小蜜蜂經(jīng)過5次飛行后,停在數(shù)軸上實(shí)數(shù)3位于的點(diǎn)處,則小蜜蜂不同的飛行方式有多少種?( )
A. 5 B. 25 C. 55 D. 75
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
已知橢圓:的左、右頂點(diǎn)分別為A,B,其離心率,點(diǎn)為橢圓上的一個(gè)動(dòng)點(diǎn),面積的最大值是.
(1)求橢圓的方程;
(2)若過橢圓右頂點(diǎn)的直線與橢圓的另一個(gè)交點(diǎn)為,線段的垂直平分線與軸交于點(diǎn),當(dāng)時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com