設(shè)P為橢圓=1(a>b>0)上任一點,F1、F2分別為左、右焦點,求|PF1|·|PF2|的最大、最小值.
當(dāng)x02=0,即x0=0時,z最大=a2;
當(dāng)x0=±a,x02=a2時,z最小=a2-·a2=a2-c2=b2.
解法一:令z=|PF1|·|PF2|=(a+ex0)(a-ex0)=a2-e2x02.
∵-a≤x0≤a,∴0≤x02≤a2.
當(dāng)x02=0,即x0=0時,z最大=a2;
當(dāng)x0=±a,x02=a2時,z最小=a2-·a2=a2-c2=b2.
解法二:∵|PF1|+|PF2|=2a,∴|PF1|·|PF2|≤()2=a2,
當(dāng)且僅當(dāng)|PF1|=|PF2|時,取“=”.∴z最大=a2.求z最小同上.
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com