已知正項數(shù)列{an}中,a1=6,點在拋物線y2=x+1上;數(shù)列{bn}中,點Bn(n,bn)在過點(0,1),以方向向量為(1,2)的直線上.
(Ⅰ)求數(shù)列{an},{bn}的通項公式;(文理共答)
(Ⅱ)若f(n)=,問是否存在k∈N,使f(k+27)=4f(k)成立,若存在,求出k值;若不存在,說明理由;(文理共答)
(Ⅲ)對任意正整數(shù)n,不等式≤0成立,求正數(shù)a的取值范圍.(只理科答)
考點:
等差數(shù)列與等比數(shù)列的綜合;等差數(shù)列的通項公式;等比數(shù)列的通項公式;數(shù)列與不等式的綜合.
專題:
綜合題;等差數(shù)列與等比數(shù)列.
分析:
(Ⅰ)將點代入拋物線y2=x+1,得an+1=an+1,由此能求出an;過點(0,1),以方向向量為(1,2)的直線方程為y=2x+1,把點Bn(n,bn)代入能求出bn.
(Ⅱ)由f(n)==,利用題設(shè)條件能推導(dǎo)出存在唯一的k=4符合條件.
(Ⅲ)由﹣≤0,知a≤,設(shè)f(n+1)=,利用構(gòu)造法能求出正數(shù)a的取值范圍.
解答:
解:(Ⅰ)將點代入拋物線y2=x+1,
得an+1=an+1,
∴an+1﹣an=d=1,
∴an=a1+(n﹣1)•1=n+5,
∵過點(0,1),以方向向量為(1,2)的直線方程為y=2x+1,
點Bn(n,bn)在過點(0,1),以方向向量為(1,2)的直線上,
∴bn=2n+1.
(Ⅱ)由(Ⅰ)知f(n)==,
當(dāng)k為偶數(shù)時,k+27為奇數(shù),
∴f(k+27)=4f(k),
∴k+27+5=4(2k+1),∴k=4.
當(dāng)k為奇數(shù)時,k+27為偶數(shù),
∴2(k+27)+1=4(k+5),∴k=(舍去)
綜上所述,存在唯一的k=4符合條件.
(Ⅲ)由﹣≤0,
即a≤,
設(shè)f(n+1)=,
∴=
=
=
=,
∴f(n+1)>f(n),即f(n)遞增,
∴f(n)min=f(1)==,
∴0<a≤.…(12分)
點評:
本題考查數(shù)列的通項公式的求法,考查滿足條件的實數(shù)的取值范圍的求法,解題時要認真審題,仔細解答,注意等價轉(zhuǎn)化思想的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:
an |
2n+1 |
1 |
an |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
n |
a1+a2+…+an |
1 |
2n |
lim |
n→∞ |
nan |
sn |
A、0 | ||
B、1 | ||
C、2 | ||
D、
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
an |
1 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
log2bn+1•log2bn+2 |
1 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
8 |
1 |
2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com