【題目】已知函數(shù),.

(1)討論的單調(diào)性;

(2)定義:對(duì)于函數(shù),若存在,使成立,則稱為函數(shù)的不動(dòng)點(diǎn).如果函數(shù)存在不動(dòng)點(diǎn),求實(shí)數(shù)的取值范圍.

【答案】(1)見解析;(2)

【解析】

(1)對(duì)函數(shù)求導(dǎo),結(jié)合二次函數(shù)的性質(zhì)討論的范圍,即可判斷的單調(diào)性;(2)由存在不動(dòng)點(diǎn),得到有實(shí)數(shù)根,即有解,構(gòu)造函數(shù)令,通過(guò)求導(dǎo)即可判斷的單調(diào)性,從而得到的取值范圍,即可得到的范圍。

(1)的定義域?yàn)?/span>,

對(duì)于函數(shù),

①當(dāng)時(shí),即時(shí),恒成立.

恒成立.

為增函數(shù);

②當(dāng),即時(shí),

當(dāng)時(shí),由,得,

為增函數(shù),減函數(shù).

為增函數(shù),

當(dāng)時(shí),由恒成立,

為增函數(shù)。

綜上,當(dāng)時(shí),為增函數(shù),減函數(shù),為增函數(shù);當(dāng)時(shí),為增函數(shù)。

(2),

存在不動(dòng)點(diǎn),方程有實(shí)數(shù)根,即有解,

,

,得,

當(dāng)時(shí),單調(diào)遞減;

當(dāng)時(shí),單調(diào)遞增;

,

當(dāng)時(shí),有不動(dòng)點(diǎn),

的范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】金秋九月,丹桂飄香,某高校迎來(lái)了一大批優(yōu)秀的學(xué)生.新生接待其實(shí)也是和社會(huì)溝通的一個(gè)平臺(tái).校團(tuán)委、學(xué)生會(huì)從在校學(xué)生中隨機(jī)抽取了160名學(xué)生,對(duì)是否愿意投入到新生接待工作進(jìn)行了問(wèn)卷調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下:

愿意

不愿意

男生

60

20

女士

40

40

1)根據(jù)上表說(shuō)明,能否有99%把握認(rèn)為愿意參加新生接待工作與性別有關(guān);

2)現(xiàn)從參與問(wèn)卷調(diào)查且愿意參加新生接待工作的學(xué)生中,采用按性別分層抽樣的方法,選取10人.若從這10人中隨機(jī)選取3人到火車站迎接新生,設(shè)選取的3人中女生人數(shù)為,寫出的分布列,并求

附:,其中

0.05

0.01

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)訄A與直線相切且與圓外切。

(1)求圓心的軌跡的方程;

(2)設(shè)第一象限內(nèi)的點(diǎn)在軌跡上,若軸上兩點(diǎn),,滿足. 延長(zhǎng)、分別交軌跡、兩點(diǎn),若直線的斜率,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某校隨機(jī)抽取100名學(xué)生,獲得了他們一周課外閱讀時(shí)間(單位:小時(shí))的數(shù)據(jù),整理得到數(shù)據(jù)分組及頻數(shù)分布表和頻率分布直方圖:

1)從該校隨機(jī)選取一名學(xué)生,試估計(jì)這名學(xué)生該周課外閱讀時(shí)間少于12小時(shí)的概率;

2)求頻率分布直方圖中的a,b的值;

3)假設(shè)同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替,試估計(jì)樣本中的100名學(xué)生該周課外閱讀時(shí)間的平均數(shù)在第幾組(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代勞動(dòng)人民在筑城、筑堤、挖溝、挖渠、建倉(cāng)、建囤等工程中,積累了豐富的經(jīng)驗(yàn),總結(jié)出了一套有關(guān)體積、容積計(jì)算的方法,這些方法以實(shí)際問(wèn)題的形式被收入我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中.《九章算術(shù)·商功》:斜解立方,得兩塹堵.斜解塹堵,其一為陽(yáng)馬,一為鱉臑.陽(yáng)馬居二,鱉臑居一,不易之率也.合兩鱉臑三而一,驗(yàn)之以棊,其形露矣.”下圖解釋了這段話中由一個(gè)長(zhǎng)方體,得到塹堵、陽(yáng)馬鱉臑的過(guò)程.已知塹堵的內(nèi)切球(與各面均相切直徑1,則鱉臑的體積最小值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知多面體中,平面,,,.

(Ⅰ)證明:平面

(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)求曲線在點(diǎn)處的切線方程;

(Ⅱ)若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

(Ⅲ)設(shè)函數(shù),其中.證明:的圖象在圖象的下方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年在印度尼西亞日惹舉辦的亞洲乒乓球錦標(biāo)賽男子團(tuán)體決賽中,中國(guó)隊(duì)與韓國(guó)隊(duì)相遇,中國(guó)隊(duì)男子選手A,BC,D,E依次出場(chǎng)比賽,在以往對(duì)戰(zhàn)韓國(guó)選手的比賽中他們五人獲勝的概率分別是0.80.8,0.8,0.75,0.7,并且比賽勝負(fù)相互獨(dú)立.賽會(huì)釆用53勝制,先贏3局者獲得勝利.

1)在決賽中,中國(guó)隊(duì)以31獲勝的概率是多少?

2)求比賽局?jǐn)?shù)的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】目前,新冠病毒引發(fā)的肺炎疫情在全球肆虐,為了解新冠肺炎傳播途徑,采取有效防控措施,某醫(yī)院組織專家統(tǒng)計(jì)了該地區(qū)500名患者新冠病毒潛伏期的相關(guān)信息,數(shù)據(jù)經(jīng)過(guò)匯總整理得到如圖所示的頻率分布直方圖(用頻率作為概率).潛伏期低于平均數(shù)的患者,稱為短潛伏者,潛伏期不低于平均數(shù)的患者,稱為長(zhǎng)潛伏者”.

1)求這500名患者潛伏期的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表),并計(jì)算出這500名患者中長(zhǎng)潛伏者的人數(shù);

2)為研究潛伏期與患者年齡的關(guān)系,以潛伏期是否高于平均數(shù)為標(biāo)準(zhǔn)進(jìn)行分層抽樣,從上述500名患者中抽取300人,得到如下列聯(lián)表,請(qǐng)將列聯(lián)表補(bǔ)充完整,并根據(jù)列聯(lián)表判斷是否有97.5%的把握認(rèn)為潛伏期長(zhǎng)短與患者年齡有關(guān);

短潛伏者

長(zhǎng)潛伏者

合計(jì)

60歲及以上

90

60歲以下

140

合計(jì)

300

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案