設(shè)函數(shù)y=x3+ax2+bx+的圖象如圖所示,且與y=0在原點(diǎn)相切,若函數(shù)的極小值為-4,
(1)求a,b,c的值;
(2)求函數(shù)的遞減區(qū)間.

解:(1)由題意知f(0)=0
∴c=0
∴f(x)=x3+ax2+bx f'(x)=3x2+2ax+b
又∵f'(x)=b=0
∴f'(x)=3x2+2ax=0
故極小值點(diǎn)為x=-
∴f(-)=-4
∴a=-3
(2)令f'(x)<0 即:3x2-6x<0
解得:0<x<2
∴函數(shù)的遞減區(qū)間為(0,2)
分析:(1)函數(shù)在切點(diǎn)處的導(dǎo)數(shù)值為切線斜率,切點(diǎn)在切線上,列方程解.
(2)導(dǎo)函數(shù)大于0對(duì)應(yīng)區(qū)間是單調(diào)遞增區(qū)間;導(dǎo)函數(shù)小于0對(duì)應(yīng)區(qū)間是單調(diào)遞減區(qū)間.
點(diǎn)評(píng):本題考查了導(dǎo)數(shù)的幾何意義及利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,要注意從圖象中得到有價(jià)值的結(jié)論,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a∈R,若函數(shù)y=x3+ax,x∈R有大于零的極值點(diǎn),則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題:
①設(shè)
a
b
、
c
是互不共線的非零向量,則(
a
b
c
-(
c
a
b
=
0
;
②“a=1”是“函數(shù)f(x)=lg(ax+1)在(0,+∞)單調(diào)遞增”的充分不必要條件;
③已知α,β∈R,則“α=β”是“tanα=tanβ”的充要條件;
④函數(shù)f(x)=2x-x2的在(1,3)上至少一個(gè)零點(diǎn);
x-1
(x-2)≥0
的解集為[2,+∞);
⑥函數(shù)y=x3在x=0處切線不存在.
其中正確命題的個(gè)數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•溫州一模)設(shè)函數(shù)y=f(x),我們把滿足方程f(x)=0的值x叫做函數(shù)y=f(x)的零點(diǎn).現(xiàn)給出函數(shù)f(x)=x3-3x2+ax+a2-10,若它是R上的單調(diào)函數(shù),且1是它的零點(diǎn).
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)設(shè)Q1(x1,0),若過(guò)P1(x1,f(x1))作函數(shù)y=f(x)的圖象的切線與x軸交于點(diǎn)Q2(x2,0),再過(guò)P2(x2,f(x2))作函數(shù)y=f(x)的圖象的切線與x軸交于點(diǎn)Q3(x3,0),…,依此下去,過(guò)Pn(xn,f(xn))(n∈N*)作函數(shù)y=f(x)的圖象的切線與x軸交于點(diǎn)Qn+1(xn+1,0),….
若x1=2,xn>1,求xn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

命題:
①設(shè)
a
、
b
c
是互不共線的非零向量,則(
a
b
c
-(
c
a
b
=
0
;
②“a=1”是“函數(shù)f(x)=lg(ax+1)在(0,+∞)單調(diào)遞增”的充分不必要條件;
③已知α,β∈R,則“α=β”是“tanα=tanβ”的充要條件;
④函數(shù)f(x)=2x-x2的在(1,3)上至少一個(gè)零點(diǎn);
x-1
(x-2)≥0
的解集為[2,+∞);
⑥函數(shù)y=x3在x=0處切線不存在.
其中正確命題的個(gè)數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007年浙江省溫州市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

設(shè)函數(shù)y=f(x),我們把滿足方程f(x)=0的值x叫做函數(shù)y=f(x)的零點(diǎn).現(xiàn)給出函數(shù)f(x)=x3-3x2+ax+a2-10,若它是R上的單調(diào)函數(shù),且1是它的零點(diǎn).
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)設(shè)Q1(x1,0),若過(guò)P1(x1,f(x1))作函數(shù)y=f(x)的圖象的切線與x軸交于點(diǎn)Q2(x2,0),再過(guò)P2(x2,f(x2))作函數(shù)y=f(x)的圖象的切線與x軸交于點(diǎn)Q3(x3,0),…,依此下去,過(guò)Pn(xn,f(xn))(n∈N*)作函數(shù)y=f(x)的圖象的切線與x軸交于點(diǎn)Qn+1(xn+1,0),….
若x1=2,xn>1,求xn

查看答案和解析>>

同步練習(xí)冊(cè)答案