(12分)已知定義在實(shí)數(shù)集上的函數(shù)f(x)滿足xf(x)為偶函數(shù),f(x+2)="-f(x)," 且當(dāng)時,.
(1)求時,函數(shù)f(x)的解析式。(2)求f(2008)、f(2008.5)的值。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義在R上的奇函數(shù),當(dāng),
(1)作出函數(shù)的圖象
(2)求函數(shù)的表達(dá)式
(3)求滿足方程的解
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)關(guān)于x的函數(shù)f(x)=-1-2a+2cos2x-2acosx的最小值為g(a).(1)寫出g(a)的表達(dá)式;(2)當(dāng)時,求a的值,并求此時f(x)的最大值。(12分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(14分)函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d8/b/1vify3.gif" style="vertical-align:middle;" />,且滿足對任意,
有
(1) 求的值;
(2) 判斷的奇偶性并證明你的結(jié)論;
(3) 如果,,且在上是增函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(14分)已知定義在上的函數(shù)滿足:
,且對于任意實(shí)數(shù),總有成立.
(1)求的值,并證明函數(shù)為偶函數(shù);
(2)若數(shù)列滿足,求證:數(shù)列為等比數(shù)列;
(3)若對于任意非零實(shí)數(shù),總有.設(shè)有理數(shù)滿足,判斷和 的大小關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1) 當(dāng)時,求的值;
(2) 是否存在實(shí)數(shù)使的定義域、值域都是
若存在,求出的值;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)已知f(x)是定義在R上的奇函數(shù),且x<0時,f(x)=x2+2x-3.
(1)求f(0),f(1); (2)求函數(shù)f(x)的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(滿分12分)已知為偶函數(shù),曲線過點(diǎn),且.
(Ⅰ)若曲線有斜率為0的切線,求實(shí)數(shù)的取值范圍
(Ⅱ)若當(dāng)時函數(shù)取得極大值,且方程有三個不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知函數(shù),
(I)當(dāng)時,求函數(shù)的極值;
(II)若函數(shù)在區(qū)間上是單調(diào)增函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com