設a、b、c是互不相等的正數(shù),則下列等式中不恒成立的是( 。
A、|a-b|≤|a-c|+|b-c|
B、a2+
1
a2
≥a+
1
a
C、|a-b|+
1
a-b
≥2
D、
a+3
-
a+1
a+2
-
a
分析:本題主要考查不等式恒成立的條件,由于給出的是不完全題干,必須結合選擇支,才能得出正確的結論.可運用排除法
解答:解:A.由于絕對值不等式性質得等式恒成立;
B.作差可得,(a-1)2(a2+a+1)•a-2≥0,故恒成立;
C.舉例a=2,b=3不恒成立,故C錯;
D.即為
a+3
+
a
a+1
+
a+2
,兩邊平方得到a2+3a≤a2+3a+2,恒成立
故選:C
點評:要靈活運用公式,牢記公式a2+b2≥2ab成立的條件.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2013屆安徽省高二下學期期中考試理科數(shù)學試卷(解析版) 題型:解答題

已知a、b、c是互不相等的非零實數(shù).若用反證法證明三個方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一個方程有兩個相異實根.

【解析】本試題主要考查了二次方程根的問題的綜合運用。運用反證法思想進行證明。

先反設,然后推理論證,最后退出矛盾。證明:假設三個方程中都沒有兩個相異實根,

則Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0

相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,

(a-b)2+(b-c)2+(c-a)2≤0.顯然不成立。

證明:假設三個方程中都沒有兩個相異實根,

則Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0.

相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,

(a-b)2+(b-c)2+(c-a)2≤0.                                      ①

由題意a、b、c互不相等,∴①式不能成立.

∴假設不成立,即三個方程中至少有一個方程有兩個相異實根.

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a、b、c是互不相等的非零實數(shù),試證:三個方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0中至少有一個方程有兩個相異實根.

查看答案和解析>>

同步練習冊答案