已知是定義在R上的奇函數(shù),當(dāng)時(shí),.
(1)求的值;
(2)求的解析式;
(3)解關(guān)于的不等式,結(jié)果用集合或區(qū)間表示.

(1)0
(2)
(3)當(dāng)a>1時(shí),不等式的解集為(1-loga2,1+loga5);當(dāng)0<a<1時(shí),不等式的解集為R.

解析試題分析:解 (1)∵f(x)是奇函數(shù),∴f(-2)=-f(2),即f(2)+f(-2)=0.
(2)當(dāng)x<0時(shí),-x>0,∴f(-x)=a-x-1.  
∵f(x)是奇函數(shù),有f(-x)=-f(x),∴f(x)=-a-x+1(x<0).
∴所求的解析式為.
(3)不等式等價(jià)于,
.
當(dāng)a>1時(shí),有,注意此時(shí)loga2>0,loga5>0,
可得此時(shí)不等式的解集為(1-loga2,1+loga5).
同理可得,當(dāng)0<a<1時(shí),不等式的解集為R.
綜上所述,當(dāng)a>1時(shí),不等式的解集為(1-loga2,1+loga5);當(dāng)0<a<1時(shí),不等式的解集為R.
考點(diǎn):不等式的應(yīng)用
點(diǎn)評(píng):解決的關(guān)鍵是對(duì)于奇偶性和單調(diào)性的應(yīng)用,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知是定義在R上的奇函數(shù),當(dāng)x>0是f(x)=x2+3x-4.則當(dāng)x<0時(shí)f(x)的解析式為
f(x)=-x2+3x+4
f(x)=-x2+3x+4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省成都市武侯區(qū)玉林中學(xué)高一(上)期中數(shù)學(xué)試卷(解析版) 題型:填空題

已知是定義在R上的奇函數(shù),當(dāng)x>0是f(x)=x2+3x-4.則當(dāng)x<0時(shí)f(x)的解析式為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省高三第一次階段考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分13分)已知是定義在R上的奇函數(shù),當(dāng)時(shí)

(1)求函數(shù)的表達(dá)式;

(2)畫出其大致圖像并指出其單調(diào)區(qū)間.

(3)若函數(shù)-1有三個(gè)零點(diǎn),求K的取值范圍;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆度河南泌陽(yáng)二高高三第一次月考數(shù)學(xué)試卷 題型:填空題

已知是定義在R上的奇函數(shù),又是周期為2的周期函數(shù),當(dāng)時(shí),

,則的值為_____.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年哈爾濱市高二下學(xué)期期末考試文科數(shù)學(xué)卷 題型:填空題

已知是定義在R上的奇函數(shù),當(dāng)時(shí),,則不等式的解集是                .

 

查看答案和解析>>

同步練習(xí)冊(cè)答案