(本小題12分)某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產(chǎn)品,估計能獲得x∈[10,1000]萬元的投資收益.現(xiàn)準備制定一個對科研課題組的獎勵方案:獎金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,且獎金不超過9萬元,同時獎金不超過投資收益的20%.
(Ⅰ)若建立函數(shù)f(x)模型制定獎勵方案,試用數(shù)學語言表述公司對獎勵函數(shù)f(x)模型
的基本要求;
(Ⅱ)現(xiàn)有兩個獎勵函數(shù)模型:(i) y=;(ii) y=4lgx-3.試分析這兩個函數(shù)模型
是否符合公司要求?

解:(Ⅰ)設獎勵函數(shù)模型為y=f(x),則公司對函數(shù)模型的基本要求是:
當x∈[10,1000]時,①f(x)是增函數(shù);②f(x)≤9恒成立;③恒成立.
(Ⅱ)(1)對于函數(shù)模型:當x∈[10,1000]時,f(x)是增函數(shù),
.所以f(x)≤9恒成立.
因為函數(shù)在[10,1000]上是減函數(shù),所以.
從而,即不恒成立.故該函數(shù)模型不符合公司要求.                                   
(2)對于函數(shù)模型f(x)=4lgx-3:當x∈[10,1000]時,f(x)是增函數(shù),
. 所以f(x)≤9恒成立.     
設g(x)=4lgx-3-,則.
當x≥10時,
所以g(x)在[10,1000]上是減函數(shù),從而g(x)≤g(10)=-1<0.
所以4lgx-3-<0,即4lgx-3<
所以恒成立.故該函數(shù)模型符合公司要求.

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)當時,求函數(shù)f(x)的最大值和最小值;
(2)求實數(shù)的取值范圍,使在區(qū)間上是單調(diào)函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

若定義在上的函數(shù)滿足條件:存在實數(shù),使得:
⑴ 任取,有是常數(shù));
⑵ 對于內(nèi)任意,當,總有。
我們將滿足上述兩條件的函數(shù)稱為“平頂型”函數(shù),稱為“平頂高度”,稱為“平頂寬度”。根據(jù)上述定義,解決下列問題:
(1)函數(shù)是否為“平頂型”函數(shù)?若是,求出“平頂高度”和“平頂寬度”;若不是,簡要說明理由。
(2) 已知是“平頂型”函數(shù),求出 的值。
(3)對于(2)中的函數(shù),若上有兩個不相等的根,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(理數(shù))(12分)某商場銷售某種商品的經(jīng)驗表明,該商品每日的銷售量(單位:千克)與銷售價格(單位:元/千克)滿足關(guān)系式,其中,為常數(shù),已知銷售價格為5元/千克時,每日可售出該商品11千克
(Ⅰ) 求的值;
(Ⅱ) 若該商品的成品為3元/千克, 試確定銷售價格的值,使商場每日銷售該商品所獲得的利潤最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)為實數(shù),,),
(1)若,且函數(shù)的值域為,求的表達式;
(2)在(1)的條件下,當時,是單調(diào)函數(shù),求實數(shù)的取值范圍;
(3)設,,,且函數(shù)為偶函數(shù),判斷是否大于?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知二次函數(shù)的圖像經(jīng)過坐標原點,且滿足,設函數(shù),其中m為常數(shù)且。
(1)求函數(shù)的解析式;
(2)判斷函數(shù)的單調(diào)性并說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知一家公司生產(chǎn)某種品牌服裝的年固定成本為10萬元,每生產(chǎn)1千件需另投入2.7萬元.設該公司一年內(nèi)共生產(chǎn)該品牌服裝x千件并全部銷售完,每千件的銷售收入為R(x)萬元,且R(x)=
(1)寫出年利潤W(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該公司在這一品牌服裝的生產(chǎn)中所獲得利潤最大?(注:年利潤=年銷售收入-年總成本)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)的定義域為,并滿足(1)對于一切實數(shù),都有
(2)對任意的;  (3);
利用以上信息求解下列問題:
(1)求;
(2)證明;
(3)若對任意的恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),在區(qū)間上有最大值5,最小
值2。
(1)求a,b的值。
(2)若上單調(diào),求的取值范圍。

查看答案和解析>>

同步練習冊答案