如圖,已知三棱錐的側(cè)棱、、兩兩垂直,且,,是的中點(diǎn).
(1)求點(diǎn)到面的距離;
(2)求二面角的正弦值.
(1);(2).
解析試題分析:(1)解法一是利用等體積法求出點(diǎn)到平面的距離,具體做法是:先利用、、兩兩垂直以及它們的長(zhǎng)度計(jì)算出三棱錐的體積,然后將此三棱錐轉(zhuǎn)換成以點(diǎn)為頂點(diǎn),以所在平面為底面的三棱錐通過體積來(lái)計(jì)算點(diǎn)到平面的距離;解法二是直接利用空間向量法求點(diǎn)到平面的距離;(2)解法一是通過三垂線法求二面角的正弦值,即在平面內(nèi)作,垂足為點(diǎn),連接、,證明,,從而得到為二面角的平面角,再選擇合適的三角形求出的正弦值;解法二是直接利用空間向量法求二面角的余弦值,進(jìn)而求出它的正弦值.
試題解析:解法一:(1)如下圖所示,取的中點(diǎn),連接、,
由于,,且,
平面,平面,平面,
平面,,
,為的中點(diǎn),,
,平面,平面,平面,
平面,,
,且,,
為的中點(diǎn),,
平面,平面,,,
,
而,,
設(shè)點(diǎn)到平面的距離為,由等體積法知,,
即
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在直三棱柱中,,是棱上的一點(diǎn),是的延長(zhǎng)線與的延長(zhǎng)線的交點(diǎn),且∥平面。
(1)求證:;
(2)求二面角的平面角的余弦值;
(3)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=1.
(1)求異面直線B1C1與AC所成角的大;
(2)若該直三棱柱ABC-A1B1C1的體積為,求點(diǎn)A到平面A1BC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知三角形與所在平面互相垂直,且,,,點(diǎn),分別在線段上,沿直線將向上翻折,使與重合.
(Ⅰ)求證:;
(Ⅱ)求直線與平面所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知三棱錐的側(cè)棱兩兩垂直,且,,是的中點(diǎn)。
(1)求異面直線與所成角的余弦值;
(2)求直線和平面的所成角的正弦值。
(3)求點(diǎn)E到面ABC的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,四棱柱ABCD-A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E為棱AA1的中點(diǎn).
(1)證明:B1C1⊥CE;
(2)設(shè)點(diǎn)M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為.求線段AM的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(如圖1)在平面四邊形中,為中點(diǎn),,,且,現(xiàn)沿折起使,得到立體圖形(如圖2),又B為平面ADC內(nèi)一點(diǎn),并且ABCD為正方形,設(shè)F,G,H分別為PB,EB,PC的中點(diǎn).
(1)求三棱錐的體積;
(2)在線段PC上是否存在一點(diǎn)M,使直線與直線所成角為?若存在,求出線段的長(zhǎng);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com