(本題15分)已知點(diǎn)是橢圓E:()上一點(diǎn),F1、F2分別是橢圓E的左、右焦點(diǎn),O是坐標(biāo)原點(diǎn),PF1⊥x軸.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)A、B是橢圓E上兩個(gè)動點(diǎn),().求證:直線AB的斜率為定值;
(Ⅲ)在(Ⅱ)的條件下,當(dāng)△PAB面積取得最大值時(shí),求λ的值.
(1) (2)根據(jù)已知的向量的坐標(biāo)關(guān)系,結(jié)合點(diǎn)差法來得到直線的斜率。
(3)
【解析】
試題分析:解:(Ⅰ)∵PF1⊥x軸,
∴F1(-1,0),c=1,F2(1,0),
|PF2|=,2a=|PF1|+|PF2|=4,a=2,b2=3,
橢圓E的方程為:;…………………4分
(Ⅱ)設(shè)A(x1,y1)、B(x2,y2),由 得
(x1+1,y1-)+(x2+1,y2-)=(1,- ),
所以x1+x2=-2,y1+y2=(2-)………①
又,,
兩式相減得3(x1+x2)(x1-x2)+ 4(y1+y2)(y1-y2)=0………..②
以①式代入可得AB的斜率k=為定值; ……………9分
(Ⅲ)設(shè)直線AB的方程為y=x+t,
與聯(lián)立消去y并整理得 x2+tx+t2-3=0, △=3(4-t2),
AB|=,
點(diǎn)P到直線AB的距離為d=,
△PAB的面積為S=|AB|×d=, ………10分
設(shè)f(t)=S2=(t4-4t3+16t-16) (-2<t<2),
f’(t)=-3(t3-3t2+4)=-3(t+1)(t-2)2,由f’(t)=0及-2<t<2得t=-1.
當(dāng)t∈(-2,-1)時(shí),f’(t)>0,當(dāng)t∈(-1,2)時(shí),f’(t)<0,f(t)=-1時(shí)取得最大值,
所以S的最大值為.此時(shí)x1+x2=-t=1=-2,=3. ………………15分
考點(diǎn):橢圓的方程,向量
點(diǎn)評:解析幾何中的圓錐曲線的求解,一般運(yùn)用待定系數(shù)法來求解,同時(shí)運(yùn)用設(shè)而不求的思想來研究直線與橢圓的位置關(guān)系,屬于中檔題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本題15分)已知橢圓的離心率為,短軸的一個(gè)端點(diǎn)到右焦點(diǎn)的距離為,直線交橢圓于不同的兩點(diǎn),.
(Ⅰ)求橢圓的方程;
(Ⅱ)若,且,求的值(點(diǎn)為坐標(biāo)原點(diǎn));
(Ⅲ)若坐標(biāo)原點(diǎn)到直線的距離為,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省高三上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
. (本題滿分15分)已知點(diǎn),為一個(gè)動點(diǎn),且直線的斜率之積為
(I)求動點(diǎn)的軌跡的方程;
(II)設(shè),過點(diǎn)的直線交于兩點(diǎn),的面積記為S,若對滿足條件的任意直線,不等式的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三第一學(xué)期期末考試文科數(shù)學(xué) 題型:解答題
(本題15分)已知曲線與曲線,設(shè)點(diǎn)是曲線上任意一點(diǎn),直線與曲線交于、兩點(diǎn).
(1)判斷直線與曲線的位置關(guān)系;
(2)以、兩點(diǎn)為切點(diǎn)分別作曲線的切線,設(shè)兩切線的交點(diǎn)為,求證:點(diǎn)到直線:與:距離的乘積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年浙江省高一下學(xué)期期中考試數(shù)學(xué)(8-13班) 題型:解答題
(本題滿分15分)已知點(diǎn)(1,)是函數(shù)且)的圖象上一點(diǎn),等比數(shù)列的前n項(xiàng)和為,數(shù)列的首項(xiàng)為c,且前n項(xiàng)和滿足
-=+(n2).
(Ⅰ)求數(shù)列和的通項(xiàng)公式;
(Ⅱ)若數(shù)列{前n項(xiàng)和為,問>的最小正整數(shù)n是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com