19.(本小題滿分14分)如圖所示,已知是直角梯形,,,
,平面
(1) 證明:;
(2) 若的中點(diǎn),證明:∥平面;
(3)若,求三棱錐的體積.
解:(1)由已知易得,.…………1分

,即.…………2分
 又 ∵ 平面,平面
.  …………3分
,
平面.…………4分
平面,
.…………5分
(2)取的中點(diǎn)為,連結(jié)
,,
,且
∴四邊形是平行四邊形,即.…………6分
平面,
平面.…………7分
分別是的中點(diǎn),

∵ 平面,
平面.…………9分
∵ ,
∴平面平面.…………10分
∵ 平面,
平面.…………11分
(3)由已知得,…………12分
所以,.…………14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)

E

 
如圖,四棱錐P-ABCD中,PA⊥平面ABCD,PB與底面

A

 
所成的角為45°,底面ABCD為直角梯形,

D

 

C

 
B
 
 (Ⅰ)求證:平面⊥平面;

(Ⅱ)在棱上是否存在一點(diǎn),使?若存在,請(qǐng)確定E點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(13分)如圖,已知正三棱柱的底面正三角形的邊長(zhǎng)是2,D是的中點(diǎn),直線與側(cè)面所成的角是.

⑴求二面角的大。
⑵求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,是一個(gè)無(wú)蓋的正方體盒子展開(kāi)后的平面圖, 、、是展

開(kāi)圖上的三點(diǎn), 則正方體盒子中的值為         
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在直三棱柱中,.有下列條件:

;②;③.其中能成為
的充要條件的是(填上該條件的序號(hào))________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

教室內(nèi)有一直尺,無(wú)論怎樣放置,在地面上總有直線與直尺所在直線
平行            垂直           相交           異面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在北緯45°的緯線圈上有兩地,分別在東經(jīng)70°與東經(jīng)160°的經(jīng)線上,設(shè)地球半徑為 則兩地的球面距離等于(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分) 如圖正三棱柱各條棱長(zhǎng)均為1,D是側(cè)棱中點(diǎn)。

(I)求證:平面
(II)求平面
(Ⅲ)求點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知球的半徑為1,三點(diǎn)都在球面上,且每?jī)牲c(diǎn)間的球面距離均為,則球心到平面的距離為
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案