設(shè)α、β、γ為平面,a、b為直線,給出下列條件:
①a?α、b?β,a∥β,b∥α;②α∥γ,β∥γ;
③α⊥γ,β⊥γ;④a⊥α,b⊥β,a∥b.
其中能使α∥β成立的條件是


  1. A.
    ①②
  2. B.
    ②③
  3. C.
    ②④
  4. D.
    ③④
C
分析:①由面面平行的判斷定理與定義可得:可能α∥β或者α與β相交.②由平面與平面平行的傳遞性可得:α∥β.③由平面與平面的位置關(guān)系可得:可能α∥β或者α與β相交.④由線面垂直的定義可得:b⊥α,又因?yàn)閎⊥β,所以α∥β.
解答:①若a?α、b?β,a∥β,b∥α,由面面平行的判斷定理與定義可得:可能α∥β或者α與β相交.所以①錯誤.
②若α∥γ,β∥γ,由平面與平面平行的傳遞性可得:α∥β.所以②正確.
③若α⊥γ,β⊥γ,則由平面與平面的位置關(guān)系可得:可能α∥β或者α與β相交.所以③錯誤.
④若a⊥α,a∥b,由線面垂直的定義可得:b⊥α,又因?yàn)閎⊥β,所以α∥β.所以④正確.
故選C.
點(diǎn)評:解決此類問題的關(guān)鍵是熟練掌握線面平行、線面垂直的判斷定理與性質(zhì)定理,以及面面平行的判斷定理,并且靈活的利用題中的條件解決線面問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•四川)設(shè)P1,P2,…Pn為平面α內(nèi)的n個點(diǎn),在平面α內(nèi)的所有點(diǎn)中,若點(diǎn)P到點(diǎn)P1,P2,…Pn的距離之和最小,則稱點(diǎn)P為P1,P2,…Pn的一個“中位點(diǎn)”,例如,線段AB上的任意點(diǎn)都是端點(diǎn)A,B的中位點(diǎn),現(xiàn)有下列命題:
①若三個點(diǎn)A、B、C共線,C在線段AB上,則C是A,B,C的中位點(diǎn);
②直角三角形斜邊的中點(diǎn)是該直角三角形三個頂點(diǎn)的中位點(diǎn);
③若四個點(diǎn)A、B、C、D共線,則它們的中位點(diǎn)存在且唯一;
④梯形對角線的交點(diǎn)是該梯形四個頂點(diǎn)的唯一中位點(diǎn).
其中的真命題是
①④
①④
(寫出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

分別把寫有0,1,2,3,4數(shù)字的四張紙片放入一盒中,每次取一張記數(shù)字為m,放回后再取一張記數(shù)字為n,設(shè)P(m,n)為平面中的點(diǎn),則點(diǎn)P(m,n)∈{(x,y)|9x2+16y2≤144}的概率為(    )

A.                 B.                     C.                D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a、b、c為平面向量,下列的命題中:

a·(b-c)=a·b-a·c;②(a·bc=a·(b·c);③(a-b)2=|a|2-2|a||b|+|b|2;

④若a·b=0,則a=0b=0.正確的個數(shù)為(    )

A.3              B.2                 C.1                  D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(四川卷解析版) 題型:填空題

(5分)設(shè)P1,P2,…Pn為平面α內(nèi)的n個點(diǎn),在平面α內(nèi)的所有點(diǎn)中,若點(diǎn)P到點(diǎn)P1,P2,…Pn的距離之和最小,則稱點(diǎn)P為P1,P2,…Pn的一個“中位點(diǎn)”,例如,線段AB上的任意點(diǎn)都是端點(diǎn)A,B的中位點(diǎn),現(xiàn)有下列命題:

①若三個點(diǎn)A、B、C共線,C在線段AB上,則C是A,B,C的中位點(diǎn);

②直角三角形斜邊的中點(diǎn)是該直角三角形三個頂點(diǎn)的中位點(diǎn);

③若四個點(diǎn)A、B、C、D共線,則它們的中位點(diǎn)存在且唯一;

④梯形對角線的交點(diǎn)是該梯形四個頂點(diǎn)的唯一中位點(diǎn).

其中的真命題是    (寫出所有真命題的序號).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川 題型:填空題

設(shè)P1,P2,…Pn為平面α內(nèi)的n個點(diǎn),在平面α內(nèi)的所有點(diǎn)中,若點(diǎn)P到點(diǎn)P1,P2,…Pn的距離之和最小,則稱點(diǎn)P為P1,P2,…Pn的一個“中位點(diǎn)”,例如,線段AB上的任意點(diǎn)都是端點(diǎn)A,B的中位點(diǎn),現(xiàn)有下列命題:
①若三個點(diǎn)A、B、C共線,C在線段AB上,則C是A,B,C的中位點(diǎn);
②直角三角形斜邊的中點(diǎn)是該直角三角形三個頂點(diǎn)的中位點(diǎn);
③若四個點(diǎn)A、B、C、D共線,則它們的中位點(diǎn)存在且唯一;
④梯形對角線的交點(diǎn)是該梯形四個頂點(diǎn)的唯一中位點(diǎn).
其中的真命題是______(寫出所有真命題的序號).

查看答案和解析>>

同步練習(xí)冊答案