(2013•虹口區(qū)一模)已知圓O:x2+y2=4.
(1)直線l1
3
x+y-2
3
=0
與圓O相交于A、B兩點(diǎn),求|AB|;
(2)如圖,設(shè)M(x1,y1)、P(x2,y2)是圓O上的兩個(gè)動(dòng)點(diǎn),點(diǎn)M關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)為M1,點(diǎn)M關(guān)于x軸的對(duì)稱(chēng)點(diǎn)為M2,如果直線PM1、PM2與y軸分別交于(0,m)和(0,n),問(wèn)m•n是否為定值?若是求出該定值;若不是,請(qǐng)說(shuō)明理由.
分析:(1)先求出圓心(0,0)到直線
3
x+y-2
3
=0
的距離,再利用弦長(zhǎng)公式求得弦長(zhǎng)AB的值.
(2)先求出M1和點(diǎn)M2的坐標(biāo),用兩點(diǎn)式求直線PM1 和PM2的方程,根據(jù)方程求得他們?cè)趛軸上的截距m、n的值,計(jì)算mn的值,可得結(jié)論.
解答:解:(1)由于圓心(0,0)到直線
3
x+y-2
3
=0
的距離d=
3

圓的半徑r=2,∴|AB|=2
r2-d2
=2
.…(4分)
(2)由于M(x1,y1)、p(x2,y2)是圓O上的兩個(gè)動(dòng)點(diǎn),則可得 M1
-x1,-y1
,M2
x1,-y1
,且
x
2
1
+
y
2
1
=4
x
2
2
+
y
2
2
=4
.…(8分)
根據(jù)PM1的方程為
y+y1
y2+y1
=
x+x1
x2+x1
,令x=0求得  y=m=
x1y2-x2y1
x2+x1

根據(jù)PM2的方程為:
y+y1
y2+y1
=
x-x1
x2-x1
,令x=0求得 y=n=
-x1y2-x2y1
x2-x1
.…(12分)
m•n=
x
2
2
y
2
1
-
x
2
1
y
2
2
x
2
2
-
x
2
1
=
x
2
2
(4-
x
2
1
)-
x
2
1
(4-
x
2
2
)
x
2
2
-
x
2
1
=4
,顯然為定值.…(14分)
點(diǎn)評(píng):本題主要考查直線和園相交的性質(zhì),點(diǎn)到直線的距離公式,用兩點(diǎn)式求直線的方程、求直線在y軸上的截距,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•虹口區(qū)一模)數(shù)列{an}滿足an=
n   ,當(dāng)n=2k-1
ak , 當(dāng)n=2k
,其中k∈N*,設(shè)f(n)=a1+a2+…+a2n-1+a2n,則f(2013)-f(2012)等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•虹口區(qū)一模)關(guān)于z的方程
.
1+i0z
-i
1
2
i
1-i0z
.
=2+i2013
(其中i是虛數(shù)單位),則方程的解z=
1-2i
1-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•虹口區(qū)一模)在下面的程序框圖中,輸出的y是x的函數(shù),記為y=f(x),則f-1(
12
)
=
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•虹口區(qū)一模)在△ABC中,AB=2
3
,AC=2,且∠B=
π
6
,則△ABC的面積為
3
或2
3
3
或2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•虹口區(qū)一模)如果函數(shù)y=f(x)的定義域?yàn)镽,對(duì)于定義域內(nèi)的任意x,存在實(shí)數(shù)a使得f(x+a)=f(-x)成立,則稱(chēng)此函數(shù)具有“P(a)性質(zhì)”.
(1)判斷函數(shù)y=sinx是否具有“P(a)性質(zhì)”,若具有“P(a)性質(zhì)”求出所有a的值;若不具有“P(a)性質(zhì)”,請(qǐng)說(shuō)明理由.
(2)已知y=f(x)具有“P(0)性質(zhì)”,且當(dāng)x≤0時(shí)f(x)=(x+m)2,求y=f(x)在[0,1]上的最大值.
(3)設(shè)函數(shù)y=g(x)具有“P(±1)性質(zhì)”,且當(dāng)-
1
2
≤x≤
1
2
時(shí),g(x)=|x|.若y=g(x)與y=mx交點(diǎn)個(gè)數(shù)為2013個(gè),求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案