f(x)=x2+px+q,A={x|x=f(x)},B={x|ff(x)]=x}.

(1)求證:AB;

(2)如果A={-1,3},求B。

(1)證明略(2) B={-,-1,,3}


解析:

(1)證明: 設x0是集合A中的任一元素,即有x0A.

A={x|x=f(x)},∴x0=f(x0).

即有ff(x0)]=f(x0)=x0,∴x0B,故AB.

(2)證明:∵A={-1,3}={x|x2+px+q=x},

∴方程x2+(p-1)x+q=0有兩根-1和3,應用韋達定理,得

f(x)=x2x-3.

于是集合B的元素是方程ff(x)]=x,

也即(x2x-3)2-(x2x-3)-3=x (*) 的根.

將方程(*)變形,得(x2x-3)2x2=0

解得x=1,3,,-.

B={-,-1,,3}.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設命題p:函數(shù)f(x)=x2-2ax與g(x)=x+
ax
在區(qū)間[1,2]都是減函數(shù)

命題q:函數(shù)y=log3(x2-2x+a)值域A⊆[2,+∞).
若p∨q為真,p∧q為假,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,已知O為坐標原點,點A的坐標為(a,b),點B的坐標為(cosωx,sinωx),其中a2+b2≠0且ω>0.設f(x)=
OA
OB

(1)若a=
3
,b=1,ω=2,求方程f(x)=1在區(qū)間[0,2π]內的解集;
(2)若點A是過點(-1,1)且法向量為
n
=(-1,1)
的直線l上的動點.當x∈R時,設函數(shù)f(x)的值域為集合M,不等式x2+mx<0的解集為集合P.若P⊆M恒成立,求實數(shù)m的最大值;
(3)根據(jù)本題條件我們可以知道,函數(shù)f(x)的性質取決于變量a、b和ω的值.當x∈R時,試寫出一個條件,使得函數(shù)f(x)滿足“圖象關于點(
π
3
,0)
對稱,且在x=
π
6
處f(x)取得最小值”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=-x3+x2+b,g(x)=alnx.
(1)若f(x)在x∈[-
1
2
,1)
上的最大值為
3
8
,求實數(shù)b的值;
(2)若對任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求實數(shù)a的取值范圍;
(3)在(1)的條件下,設F(x)=
f(x),x<1
g(x),x≥1
,對任意給定的正實數(shù)a,曲線y=F(x)上是否存在兩點P、Q,使得△POQ是以O(O為坐標原點)為直角頂點的直角三角形,且此三角形斜邊中點在y軸上?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
a
x
(a>0),設F(x)=f(x)+g(x)

(I)求函數(shù)F(x)的單調區(qū)間;
(II)若以函數(shù)y=F(x)(x∈(0,3])的圖象上任意一點P(x0,y0)為切點的切線的斜率k≤
1
3
恒成立,求實數(shù)a的最小值;
(III)是否存在實數(shù)m,使得函數(shù)y=g(
2a
x2+1
)+m-1
的圖象與函數(shù)y=f(1+x2)的圖象恰有四個不同的交點?若存在,求出實數(shù)m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2012屆江蘇省泰州中學高三上學期期中考試數(shù)學 題型:解答題

(本題滿分16分)設函數(shù)y=f(x)對任意實數(shù)x,都有f(x)=2f(x+1),當x∈[0,1]時,f(x)=x2(1-x).
(Ⅰ)已知n∈N+,當x∈[n,n+1]時,求y=f(x)的解析式;
(Ⅱ)求證:對于任意的n∈N+,當x∈[n,n+1]時,都有|f(x)|≤;
(Ⅲ)對于函數(shù)y=f(x)(x∈[0,+∞,若在它的圖象上存在點P,使經過點P的切線與直線x+y=1平行,那么這樣點有多少個?并說明理由

查看答案和解析>>

同步練習冊答案