【題目】某商場對職工開展了安全知識競賽的活動,將競賽成績按照,,,分成組,得到下面頻率分布直方圖.根據(jù)頻率分布直方圖.下列說法正確的是( )

①根據(jù)頻率分布直方圖估計該商場的職工的安全知識競賽的成績的眾數(shù)估計值為;

②根據(jù)頻率分布直方圖估計該商場的職工的安全知識競賽的成績的中位數(shù)約為;

③若該商場有名職工,考試成績在分以下的被解雇,則解雇的職工有人;

④若該商場有名職工,商場規(guī)定只有安全知識競賽超過(包括)的人員才能成為安全科成員,則安全科成員有.

A.①③B.②③C.②④D.①④

【答案】B

【解析】

根據(jù)頻率分布直方圖,逐項判斷,即可求得答案.

對于①,由頻率分布直方圖知眾數(shù)估計值為:,故①錯誤;

對于②,設為,則解得,故②正確;

對于③,考試成績在分以下的有人,故③正確;

對于④,安全知識考試超過分(包括分)的人員有人,則安全科成員有人,故④錯誤.

故選:B.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,直線的參數(shù)方程為(其中為參數(shù)).在以坐標原點為極點,以軸正半軸為極軸建立的極坐標系中,曲線的極坐標方程為,曲線的直角坐標方程為.

(1)求直線的極坐標方程和曲線的直角坐標方程;

(2)若直線與曲線分別相交于異于原點的點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(Ⅰ)若,求函數(shù)的單調區(qū)間;

(Ⅱ)若上恒成立,求正數(shù)的取值范圍;

(Ⅲ)證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線的兩個焦點為在雙曲線C.

1)求雙曲線C的方程;

2)已知Q(0,2),P為雙曲線C上的動點,M滿足求動點M的軌跡方程;

3)過點Q(0,2)的直線與雙曲線C相交于不同的兩點EF,若求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,曲線C1的參數(shù)方程為(α為參數(shù)),曲線C2的方程為(x-12+y-12=2

1)在以O為極點,x軸的正半軸為極軸建立極坐標系,求曲線C1,C2的極坐標方程;

2)直線θ=β(0<β<π)與C1的異于極點的交點為A,與C2的異于極點的交點為B,求|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于由有限個自然數(shù)組成的集合A,定義集合S(A)={a+b|a∈A,b∈A},記集合S(A)的元素個數(shù)為d(S(A)).定義變換T,變換T將集合A變換為集合T(A)=A∪S(A).

(1)若A={0,1,2},求S(A),T(A);

(2)若集合A有n個元素,證明:“d(S(A))=2n-1”的充要條件是“集合A中的所有元素能組成公差不為0的等差數(shù)列”;

(3)若A{1,2,3,4,5,6,7,8}且{1,2,3,…,25,26}T(T(A)),求元素個數(shù)最少的集合A.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線過點,是拋物線上異于點的不同兩點,且以線段為直徑的圓恒過點.

(I)當點與坐標原點重合時,求直線的方程;

(II)求證:直線恒過定點,并求出這個定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某三棱錐的三視圖如圖所示,則該三棱錐最長的棱的棱長為( )

A. 3 B. C. D. 2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,點,為直線上的動點,過的垂線,該垂線與線段的垂直平分線交于點,記的軌跡為.

(1)求的方程;

(2)若過的直線與曲線交于,兩點,直線與直線分別交于,兩點,試判斷以為直徑的圓是否經(jīng)過定點?若是,求出定點坐標;若不是,請說明理由.

查看答案和解析>>

同步練習冊答案