已知四面體OABC中,OA、OB、OC兩兩相互垂直,,,D為四面體OABC外一點.給出下列命題:①不存在點D,使四面體ABCD有三個面是直角三角形;②不存在點D,使四面體ABCD是正三棱錐;③存在點D,使CD與AB垂直并相等;④存在無數(shù)個點D,使點O在四面體ABCD的外接球面上.則其中正確命題的序號是(  )
A.①②            B.②③            C.①③            D.③④
D

試題分析:

對于①,∵四面體OABC的三條棱OA,OB,OC兩兩垂直,OA=OB=2,OC=3,∴AC=BC=,AB=2,當(dāng)四棱錐CABD與四面體OABC一樣時,即取CD=3,AD=BD=2,四面體ABCD的三條棱DA、DB、DC兩兩垂直,此時點D,使四面體ABCD有三個面是直角三角形,故①不正確;對于②,由①知AC=BC=,AB=2,使AB=AD=BD,此時存在點D,CD=,使四面體C-ABD是正三棱錐,故②不正確;對于③,取CD=AB,AD=BD,此時CD垂直面ABD,即存在點D,使CD與AB垂直并且相等,故③正確;對于④,先找到四面體OABC的內(nèi)接球的球心P,使半徑為r,只需PD=r即可,∴存在無數(shù)個點D,使點O在四面體ABCD的外接球面上,故④正確,故正確的命題有③④,故選D.
點評:本題考查棱錐的結(jié)構(gòu)特征,同時考查了空間想象能力,轉(zhuǎn)化與劃歸的思想,以及構(gòu)造法的運用,屬于中檔題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC中,ACBCAB,ABED是邊長為1的正方形,EB⊥底面ABC,若G,F分別是ECBD的中點.
(1)求證:GF底面ABC;
(2)求證:AC⊥平面EBC;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知四棱柱的底面是邊長為1的正方形,側(cè)棱垂直底邊ABCD四棱柱,,
E是側(cè)棱AA1的中點,求

(1)求異面直線與B1E所成角的大;
(2)求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在直棱柱ABC—A1B1C1中,AC=BC=2,∠ACB=90º,AA1=2,E,F(xiàn)分別為AB、CB中點,過直線EF作棱柱的截面,若截面與平面ABC所成的二面角的大小為60º,則截面的面積為(    ).

A.3或1    B.1    C.4或1    D.3或4  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△中,,點上,,.沿將△翻折成△,使平面平面;沿將△翻折成△,使平面平面

(Ⅰ)求證:平面
(Ⅱ)設(shè),當(dāng)為何值時,二面角的大小為?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

從正方體的八個頂點中任取四個點連線,在能構(gòu)成的一對異面直線中,其所成的角的度數(shù)不可能是
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖:在多面體EF-ABCD中,四邊形ABCD是平行四邊形,△EAD為正三角形,且平面EAD平面ABCD,EF∥AB, AB=2EF=2AD=4,.

(Ⅰ)求多面體EF-ABCD的體積;
(Ⅱ)求直線BD與平面BCF所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在直棱柱中,當(dāng)?shù)酌嫠倪呅?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005715557526.png" style="vertical-align:middle;" />滿足      時,有成立.(填上你認(rèn)為正確的一個條件即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如圖4,在三棱柱中,△是邊長為的等邊三角形,
平面,分別是的中點.

(1)求證:∥平面;
(2)若上的動點,當(dāng)與平面所成最大角的正切值為時,
求平面 與平面所成二面角(銳角)的余弦值.

查看答案和解析>>

同步練習(xí)冊答案