(本小題滿分14分)
如圖,在四棱錐P-ABCD中,PD上⊥平面ABCD,AD⊥CD,且BD平分∠ADC,
E為PC的中點,AD=CD=l,BC=PC,
(Ⅰ)證明PA∥平面BDE;
(Ⅱ)證明AC⊥平面PBD:
(Ⅲ)求四棱錐P-ABCD的體積,
(Ⅰ)證明:設(shè)AC∩BD=H,連結(jié)EH,在△ADC中,因為AD=CD,且DB平分
∠ADC,所以H為AC的中點,又E為PC的中點,從而EH∥PA,
因為
平面BDE,
平面BDE,所以PA∥平面BDE;
(Ⅱ)證明:因為PD⊥平面ABCD,
平面ABCD,所以PD⊥AC,
由(I)知BD⊥AC,PD∩BD=D,
平面PBD,
平面PBD,
從而AC⊥平面PBD:
(Ⅲ)解:在△BCD中,DC=1,
,得
在Rt△PDC中,
從而PD=2,
,故四棱錐P-ABCD的體積
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分12分)
已知四棱錐P—ABCD中,
平面ABCD,底面ABCD為菱形,
,AB=PA=2,E.F分別為BC.PD的中點。
(Ⅰ)求證:PB//平面AFC;
(Ⅱ)求平面PAE與平面PCD所成銳二面角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
在斜三棱柱
中,
,
,又頂點
在底面
上的射影落在
上,側(cè)棱
與底面
成
角,
為
的中點.
(1)求證:
;
(2)如果二面角
為直二面角,試求側(cè)棱
與側(cè)面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分12分)
如圖,四棱錐
的底面
是一個邊長為4的正方形,側(cè)面
是正三角形,側(cè)面
底面
,
(Ⅰ)求四棱錐
的體積;
(Ⅱ)求直線
與平面
所成的角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
如圖所示,正方形ADEF與梯形ABCD所在的平面互相垂直,
.
(Ⅰ)求證:
;
(Ⅱ)在
上找一點
,使得
平面
,請確定
點的位置,并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,已知四棱錐
,底面
為菱形,
平面
,
,
分別是
的中點.
(Ⅰ)
判定AE與PD是否垂直,并說明理由
(Ⅱ)若
為
上的動點,
與平面
所成最大角的正切值為
,求二面角
的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若球的半徑為
,則這個球的內(nèi)接正方體的全面積等于
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
地球北緯
圈上有兩點
,點
在東經(jīng)
處,點
在西經(jīng)
處,若地球半徑為
,則
兩點的球面距離為 _____________
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
如圖,正方體
的棱長為4,P、Q分別為棱
、
上的中點,M在
上,且
,過P、Q、M的平面與
交于點N,則MN=
.
查看答案和解析>>