在正方體中,為棱、的中點(diǎn).

(1)求證:∥平面
(2)求證:平面⊥平面
(1)見解析(2)見解析

試題分析:(1)欲證線面平行,可先證直線與直線平行.連結(jié) ,可證 , ,從而 .
(2)欲證平面與平面垂直,可先證直線與平面垂直.易證 ,
所以有平面,而平面 ,結(jié)論得證.
試題解析:(1)證明:連結(jié).
在長方體中,對(duì)角線.
  、 為棱、的中點(diǎn),
.
.
平面,平面
平面.

(2) 在長方體中,平面,而平面,
 .
在正方形中,,
 平面.
平面,
平面⊥平面
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方形ABCD所在的平面與三角形CDE所在的平面交于CD,AE⊥平面CDE,且AB=2AE.

(1)求證:AB∥平面CDE
(2)求證:平面ABCD⊥平面ADE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,平面,,,的中點(diǎn).

(1)求證:平面
(2)求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知平行四邊形ABCD(圖1)中,AB=4,BC=5,對(duì)角線AC=3,將三角形ACD沿AC折起至PAC位置(圖2),使二面角為600,G,H分別是PA,PC的中點(diǎn).

(1)求證:PC平面BGH;
(2)求平面PAB與平面BGH夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

直三棱柱中,,,D為BC中點(diǎn).

(Ⅰ)求證:;
(Ⅱ)求證:;
(Ⅲ)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

三棱錐中,分別是的中點(diǎn),則四邊形是(   )
A.菱形  B.矩形 C.梯形   D.正方形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知面,直線,直線,斜交,則(  )
A.不垂直但可能平行B.可能垂直也可能平行
C.不平行但可能垂直D.既不垂直也不平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,正方體的棱長為,動(dòng)點(diǎn)P在對(duì)角線上,過點(diǎn)P作垂直于的平面,記這樣得到的截面多邊形(含三角形)的周長為y,設(shè)x,則當(dāng)時(shí),函數(shù)的值域?yàn)椋?nbsp;   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

正方體中,,分別為棱,的中點(diǎn),在平面內(nèi)且與平面平行的直線(  。
A.有無數(shù)條B.有2條C.有1條D.不存在

查看答案和解析>>

同步練習(xí)冊(cè)答案