如圖,四棱錐P-ABCD中,PA⊥底面ABCD,底面是直角梯形,AB⊥AD,點E在線段AD上,且CE∥AB。

求證:CE⊥平面PAD;
(11)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱錐P-ABCD的體積
(1)由已知PACE,又ABAD,CE∥AB,得到CEAD,所以CE⊥平面PAD(2)

試題分析:(I)因為PA⊥底面ABCD,CE平面ABCD,所以PACE。又底面是直角梯形,AB⊥AD,且CE∥AB,所以CEAD,而PA,AD交于點A,所以CE⊥平面PAD。
(II)因為PA=AB=1,AD=3,CD=,∠CDA=45°,所以BC=AD-CDcos45°=3-1=2,故四棱錐P-ABCD的體積為。
點評:典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離、體積的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟,利用向量則能簡化證明過程。本題較為簡單。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

已知直線,平面,且,給出四個命題:   ①若,則;②若,則;③若,則∥m;④若∥m,則.其中真命題的個數(shù)是
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(理科)如圖分別是正三棱臺ABC-A1B1C1的直觀圖和正視圖,O,O1分別是上下底面的中心,E是BC中點.

(1)求正三棱臺ABC-A1B1C1的體積;
(2)求平面EA1B1與平面A1B1C1的夾角的余弦;
(3) 若P是棱A1C1上一點,求CP+PB1的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900。

求證:(1)PC⊥BC;
(2)求點A到平面PBC的距離。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,在直棱柱ABC—A1B1C1中,AC=BC=2,∠ACB=90º,AA1=2,E,F(xiàn)分別為AB、CB中點,過直線EF作棱柱的截面,若截面與平面ABC所成的二面角的大小為60º,則截面的面積為(    ).

A.3或1    B.1    C.4或1    D.3或4  

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)是直線,是兩個不同的平面,下列命題成立的是(    )
A.若,則
B.若,則
C.若,, 則
D.若,則

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

從正方體的八個頂點中任取四個點連線,在能構(gòu)成的一對異面直線中,其所成的角的度數(shù)不可能是
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐中,底面,,,


(1)若E是PC的中點,證明:平面;
(2)試在線段PC上確定一點E,使二面角P- AB- E的大小為,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知三個平面,若,且相交但不垂直,分別為內(nèi)的直線,則(    )
A.B.C.D.

查看答案和解析>>

同步練習冊答案