已知二次函數(shù),直線,直線(其中,為常數(shù));.若直線1、2與函數(shù)的圖象以及、軸與函數(shù)的圖象所圍成的封閉圖形如圖陰影所示.
(Ⅰ)求、、的值;
(Ⅱ)求陰影面積關(guān)于的函數(shù)的解析式;
(Ⅲ)若問是否存在實數(shù),使得的圖象與的圖象有且只有兩個不同的交點?若存在,求出的值;若不存在,說明理由.
解:(I)由圖形可知二次函數(shù)的圖象過點(0,0),(8,0),并且的最大值為16
則,
∴函數(shù)的解析式為
(Ⅱ)由得
∵0≤t≤2,∴直線與的圖象的交點坐標(biāo)為(
由定積分的幾何意義知:
(Ⅲ)令
因為,要使函數(shù)與函數(shù)有且僅有2個不同的交點,
則函數(shù)的圖象與軸的正半軸有且只有兩個不同的交點
∴=1或=3時,
當(dāng)∈(0,1)時,是增函數(shù),當(dāng)∈(1,3)時,
是減函數(shù),當(dāng)∈(3,+∞)時,是增函數(shù)。
又因為當(dāng)→0時,;當(dāng)
所以要使有且僅有兩個不同的正根,必須且只須
即, ∴或
∴當(dāng)或時,函數(shù)與的圖象有且只有兩個不同交點。
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)如圖,已知二次函數(shù),直線l:x = 2,直線l:y = 3tx(其中1< t < 1,t為常數(shù));若直線l、l與函數(shù)的圖象所圍成的封閉圖形如圖(5)陰影所示.(1)求y = ;(2)求陰影面積s關(guān)于t的函數(shù)s = u(t)的解析式;(3)若過點A(1,m)(m≠4)可作曲線s=u(t)(t∈R)的三條切線,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知二次函數(shù)
。直線l2與函數(shù)的圖象以及直線l1、l2與函數(shù)的圖象
圍成的封閉圖形如圖中陰影所示,設(shè)這兩個陰影區(qū)域的面積之和為
(1)求函數(shù)的解析式;
(2)若函數(shù),判斷是否存在極值,若存在,求出極值,若不存在,說明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,已知二次函數(shù),直線,直線(其中,為常數(shù));.若直線的圖象以及的圖象所圍成的封閉圖形如陰影所示.
(Ⅰ)求;
(Ⅱ)求陰影面積s關(guān)于t的函數(shù)的解析式;
(Ⅲ)若過點可作曲線的三條切線,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省高三第二次月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)
已知二次函數(shù),直線,直線(其中,為常數(shù));.若直線1、2與函數(shù)的圖象以及、軸與函數(shù)的圖象所圍成的封閉圖形如圖陰影所示.
(Ⅰ)求、、的值;
(Ⅱ)求陰影面積關(guān)于的函數(shù)的解析式;
(Ⅲ)若問是否存在實數(shù),使得的圖象與的圖象有且只有兩個不同的交點?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com