已知當x=5時,二次函數(shù)f(x)=ax2+bx+c取得最小值,等差數(shù)列{an}的前n項和Sn=f(n),a2=-7.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)數(shù)列{bn}的前n項和為Tn,且,證明
【答案】分析:(I)利用二次函數(shù)在對稱軸處取得最小值列出關(guān)于a,b的等式;利用數(shù)列的通項與前n項和的關(guān)系得到通項的形式,利用已知條件a2=-7求出參數(shù)a的值,進一步得到數(shù)列{an}的通項公式.
(II)求出數(shù)列{bn}的通項,根據(jù)其通項是一個等差數(shù)列與一個等比數(shù)列的積構(gòu)成,所以利用錯位相減法求出前n項和
Tn,分n≤4和n>4進行證明.
解答:解:(Ⅰ)當n=1時,a1=S1=a+b+c,
當n≥2時,an=Sn-Sn-1=2an+b-a,
又a1適合上式,得2a+b-a=a+b+c,∴c=0.
由已知,
解方程組
∴an=2n-11.
(Ⅱ),

①-②得
==,

,,
當n≥4時,,∴,
綜上,得
點評:求數(shù)列的前n項和應(yīng)該先求出數(shù)列的通項,根據(jù)數(shù)列通項的特點選擇合適的求和方法.常見的求和方法有:公式法、倒序相加法、錯位相減法、裂項相消法、分組法.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知當x=5時,二次函數(shù)f(x)=ax2+bx+c取得最小值,等差數(shù)列{an}的前n項和Sn=f(n),a2=-7.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)數(shù)列{bn}的前n項和為Tn,且bn=
an
2n
,證明Tn≤-
9
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R)滿足下列條件:
①當x∈R時,函數(shù)的最小值為0,且f(-1+x)=f(-1-x)成立;
②當x∈(0,5)時,都有x≤f(x)≤2|x-1|+1恒成立.求:
(1)f(1)的值;
(2)函數(shù)f(x)的解析式;
(3)求最大的實數(shù)m(m>1),使得存在t∈R,只要當x∈[1,m]時,就有f(x+t)≤x成立.

查看答案和解析>>

科目:高中數(shù)學 來源:臨沂三模 題型:解答題

已知當x=5時,二次函數(shù)f(x)=ax2+bx+c取得最小值,等差數(shù)列{an}的前n項和Sn=f(n),a2=-7.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)數(shù)列{bn}的前n項和為Tn,且bn=
an
2n
,證明Tn≤-
9
2

查看答案和解析>>

科目:高中數(shù)學 來源:2010年4月山東省臨沂市24中高三(下)二輪復(fù)習月考數(shù)學試卷(理科)(解析版) 題型:解答題

已知當x=5時,二次函數(shù)f(x)=ax2+bx+c取得最小值,等差數(shù)列{an}的前n項和Sn=f(n),a2=-7.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)數(shù)列{bn}的前n項和為Tn,且,證明

查看答案和解析>>

同步練習冊答案