【題目】設(shè)函數(shù).

1)當(dāng)時(shí),對(duì)于一切,函數(shù)在區(qū)間內(nèi)總存在唯一零點(diǎn),求的取值范圍;

2)當(dāng)時(shí),數(shù)列的前項(xiàng)和,若是單調(diào)遞增數(shù)列,求的取值范圍;

3)當(dāng),時(shí),函數(shù)在區(qū)間內(nèi)的零點(diǎn)為,判斷數(shù)列、、的增減性,并說(shuō)明理由.

【答案】1;(2;(3)遞增,理由詳見(jiàn)解析.

【解析】

1)分析出函數(shù)在區(qū)間上為增函數(shù),由可得出關(guān)于的不等式組,從而解出實(shí)數(shù)的取值范圍;

2)由題意得出,利用求出數(shù)列的通項(xiàng)公式,然后由數(shù)列為遞增數(shù)列,得出,利用作差法得出關(guān)于的不等式,從而得出實(shí)數(shù)的取值范圍;

3)由題意得出,利用放縮法證明出,然后利用函數(shù)在區(qū)間上單調(diào)遞增得出,然后利用數(shù)列單調(diào)性的定義可得出數(shù)列、、的增減性.

1)當(dāng)時(shí),上是增函數(shù),

由于函數(shù)在區(qū)間上有唯一零點(diǎn),則

,,.

因此,實(shí)數(shù)的取值范圍是;

2)當(dāng)時(shí),,則.

當(dāng)時(shí),;

當(dāng)時(shí),.

.

由于數(shù)列是遞增數(shù)列,對(duì)任意的,.

于是有恒成立.

,得,解得.

當(dāng)時(shí),由,得,可得.

構(gòu)造數(shù)列,則,

所以,數(shù)列為單調(diào)遞減數(shù)列,當(dāng)時(shí),,.

綜上所述,實(shí)數(shù)的取值范圍是;

3)數(shù)列、、為遞增數(shù)列,證明如下:

當(dāng)時(shí),,該函數(shù)在上單調(diào)遞增.

由函數(shù)零點(diǎn)的定義可得.

,,

由于函數(shù)上單調(diào)遞增,所以,.

因此,數(shù)列、、、為遞增數(shù)列.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為定義在實(shí)數(shù)集上的函數(shù),把方程稱為函數(shù)的特征方程,特征方程的兩個(gè)實(shí)根、),稱為的特征根.

(1)討論函數(shù)的奇偶性,并說(shuō)明理由;

(2)已知為給定實(shí)數(shù),求的表達(dá)式;

(3)把函數(shù),的最大值記作,最小值記作,研究函數(shù)的單調(diào)性,令,若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義“正對(duì)數(shù)”:,現(xiàn)有四個(gè)命題:

①若,,則;

②若,,則;

③若,,則;

④若,,則.

則所有真命題的序號(hào)為

A.①②③B.①②④C.③④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為更好地落實(shí)農(nóng)民工工資保證金制度,南方某市勞動(dòng)保障部門調(diào)查了年下半年該市名農(nóng)民工(其中技術(shù)工、非技術(shù)工各名)的月工資,得到這名農(nóng)民工月工資的中位數(shù)為百元(假設(shè)這名農(nóng)民工的月工資均在(百元)內(nèi))且月工資收入在(百元)內(nèi)的人數(shù)為,并根據(jù)調(diào)查結(jié)果畫(huà)出如圖所示的頻率分布直方圖:

(Ⅰ)求,的值;

(Ⅱ)已知這名農(nóng)民工中月工資高于平均數(shù)的技術(shù)工有名,非技術(shù)工有名,則能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為是不是技術(shù)工與月工資是否高于平均數(shù)有關(guān)系?

參考公式及數(shù)據(jù):,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是( )

A.平行的兩條直線的斜率一定存在且相等

B.平行的兩條直線的傾斜角一定相等

C.垂直的兩條直線的斜率之積為一1

D.只有斜率都存在且相等的兩條直線才平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在路邊安裝路燈:路寬米,燈桿長(zhǎng)米,且與燈柱120°角,路燈采用錐形燈罩,燈罩軸線與燈桿垂直且正好通過(guò)道路路面的中線.

1)求燈柱高的長(zhǎng)度(精確到0.01米);

2)若該路燈投射出的光成一個(gè)圓錐體,該圓錐體母線與軸線的夾角是30°,寫(xiě)出路燈在路面上投射出的截面圖形的邊界是什么曲線?寫(xiě)出其相應(yīng)的幾何量(精確到0.01米).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法錯(cuò)誤的是( )

A.在線性回歸分析中,相關(guān)系數(shù)r的值越大,變量間的相關(guān)性越強(qiáng)

B.自變量取值一定時(shí),因變量的取值帶有一定隨機(jī)性的兩個(gè)變量之間的關(guān)系叫做相關(guān)關(guān)系

C.在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高

D.在問(wèn)歸分析中,0.98的模型比0.80的模型擬合的效果好

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某中學(xué)甲、乙兩班各隨機(jī)抽取 名同學(xué),測(cè)量他們的身高(單位: ),所得數(shù)據(jù)用莖葉圖表示如下,由此可估計(jì)甲、乙兩班同學(xué)的身高情況,則下列結(jié)論正確的是( )

A. 甲班同學(xué)身高的方差較大 B. 甲班同學(xué)身高的平均值較大

C. 甲班同學(xué)身高的中位數(shù)較大 D. 甲班同學(xué)身高在 以上的人數(shù)較多

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正四棱錐的全面積為2,記正四棱錐的高為h

1)用h表示底面邊長(zhǎng),并求正四棱錐體積V的最大值;

2)當(dāng)V取最大值時(shí),求異面直線ABPD所成角的大。結(jié)果用反三角函數(shù)值表示

查看答案和解析>>

同步練習(xí)冊(cè)答案