當(dāng)時,觀察下列等式:

,

,
,.
可以推測       
解:因為記當(dāng)時,觀察下列等式:
,
,

,
,.
可以推測
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題15分)在各項為正的數(shù)列中,數(shù)列的前n項和滿足
(1) 求;(2) 由(1)猜想數(shù)列的通項公式并證明,(3) 求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

對于各項均為整數(shù)的數(shù)列,如果=1,2,3,…)為完全平方數(shù),則稱數(shù)
具有“性質(zhì)”.不論數(shù)列是否具有“性質(zhì)”,如果存在與不是同一數(shù)列的,且同時滿足下面兩個條件:①的一個排列;②數(shù)列具有“性質(zhì)”,則稱數(shù)列具有“變換性質(zhì)”.下面三個數(shù)列:①數(shù)列的前項和;②數(shù)列1,2,3,4,5;③1,2,3,…,11.具有“性質(zhì)”的為        ;具有“變換性質(zhì)”的為        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

觀察:52 – 1 = 24,72 – 1 = 48,112 – 1 = 120,132 – 1 = 168,… 所得的結(jié)果都是24的倍數(shù),繼續(xù)試驗,則有(  )
A.第1個出現(xiàn)的等式是:152 – 1 =" 224"
B.一般式是:(2n + 3)2 – 1 =" 4(n" + 1)(n+2)
C.當(dāng)試驗一直繼續(xù)下去時,一定會出現(xiàn)等式1012 – 1 =10200
D.24的倍數(shù)加1必是某一質(zhì)數(shù)的完全平方

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)數(shù)列,,,,…,則是這個數(shù)列的 
A.第6項B.第7項C.第8項D.第9項

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在數(shù)列中,,且,則 
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

上一層臺階,若每次可上一層或兩層,設(shè)上法總數(shù)為,則下列猜想正確的是
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果五個角依次成等差數(shù)列,且最小的角為25°,最大的角為105°,則該等差數(shù)列的公差為(   )
A.16°B.15°C.20°D.13°20′

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè) ,并且對于任意成立,猜想的表達式__________.

查看答案和解析>>

同步練習(xí)冊答案