【題目】已知f(x)為定義在[﹣1,1]上的奇函數(shù),當(dāng)x∈[﹣1,0]時(shí),函數(shù)解析式為 .
(Ⅰ)求f(x)在[0,1]上的解析式;
(Ⅱ)求f(x)在[0,1]上的最值.
【答案】解:(Ⅰ)設(shè)x∈[0,1],則﹣x∈[﹣1,0].∴f(x)= =4x﹣2x
又∵f(﹣x)=﹣f(x)=﹣(4x﹣2x)∴f(x)=2x﹣4x .
所以,f(x)在[0,1]上的解析式為f(x)=2x﹣4x
(Ⅱ)當(dāng)x∈[0,1],f(x)=2x﹣4x=﹣(2x)2+2x ,
∴設(shè)t=2x(t>0),則y=﹣t2+t∵x∈[0,1],∴t∈[1,2]
當(dāng)t=1時(shí)x=0,f(x)max=0;當(dāng)t=2時(shí)x=1,f(x)min=﹣2
【解析】(Ⅰ)設(shè)x∈[0,1],則﹣x∈[﹣1,0],利用條件結(jié)合奇函數(shù)的定義求f(x)在[0,1]上的解析式;(Ⅱ)設(shè)t=2x(t>0),則y=﹣t2+t,利用二次函數(shù)的性質(zhì)求f(x)在[0,1]上的最值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,圓的方程為,若直線上至少存在一點(diǎn),使得以該點(diǎn)為圓心,1為半徑的圓與圓有公共點(diǎn),則的最大值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是奇函數(shù).
(1)求實(shí)數(shù)的值;
(2)用定義證明函數(shù)在上的單調(diào)性;
(3)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=f(x)與函數(shù)y=ex的圖象關(guān)于直線y=x對(duì)稱,函數(shù)y=g(x)的圖象與y=f(x)的圖象關(guān)于x軸對(duì)稱,若g(a)=1,則實(shí)數(shù)a的值為( )
A.﹣e
B.
C.
D.e
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), ,其中.
(1)當(dāng)時(shí),求函數(shù)的值域;
(2)若對(duì)任意,均有,求的取值范圍;
(3)當(dāng)時(shí),設(shè),若的最小值為,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為1,P,Q分別為AB,DA上動(dòng)點(diǎn),且△APQ的周長(zhǎng)為2,設(shè) AP=x,AQ=y.
(1)求x,y之間的函數(shù)關(guān)系式y(tǒng)=f(x);
(2)判斷∠PCQ的大小是否為定值?并說(shuō)明理由;
(3)設(shè)△PCQ的面積分別為S,求S的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形ABCD所在平面外一點(diǎn)P,PA⊥平面ABCD,E、F分別是AB,PC的中點(diǎn).
(1)求證:EF∥平面PAD;
(2)求證:EF⊥CD;
(3)若∠PDA=45°,求EF與平面ABCD所成的角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形O′A′B′C′的邊長(zhǎng)為1cm,它是水平放置的一個(gè)平面圖形的直觀圖,則原圖的周長(zhǎng)是( )
A.8cm
B.6cm
C.2(1+ )cm
D.2(1+ )cm
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合A={x|2﹣5≤2﹣x≤4},B={x|x2+2mx﹣3m2<0,m>0}.
(1)若m=2,求A∩B;
(2)若BA,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com