已知正四面體P-ABC的棱長為4,用一平行于底面的平面截此四面體,所得截面面積為,求截面與底面之間的距離.

答案:略
解析:

解:如圖,平面DEF∥平面ABC,設頂點P在底面ABC上的射影為O,PO與平面DEF交于,則為兩平面之間的距離.

∵平面DEF∥平面ABC,

.∴

又∵P-ABC為正四面體,∴P點在底面上的射影O為△ABC的中心.

.而PA=4,

.∴

從而

∴截面與底面之間距離為


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知棱長為a的實心正四面體模型的一條棱AB在桌面α內,設點P是模型表面上任意一點,記P到桌面α的距離的最大值為h,則h的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知正四面體P-ABC中,棱AB、PC的中點分別是M、N.
求異面直線BN、PM所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出以下5個命題:
①曲線x2-(y-1)2=1按
a
=(1,-2)
平移可得曲線(x+1)2-(y-3)2=1;
②設A、B為兩個定點,n為常數(shù),|
PA
|-|
PB
|=n
,則動點P的軌跡為雙曲線;
③若橢圓的左、右焦點分別為F1、F2,P是該橢圓上的任意一點,延長F1P到點M,使|F2P|=|PM|,則點M的軌跡是圓;
④A、B是平面內兩定點,平面內一動點P滿足向量
AB
AP
夾角為銳角θ,且滿足 |
PB
| |
AB
| +
PA
AB
=0
,則點P的軌跡是圓(除去與直線AB的交點);
⑤已知正四面體A-BCD,動點P在△ABC內,且點P到平面BCD的距離與點P到點A的距離相等,則動點P的軌跡為橢圓的一部分.
其中所有真命題的序號為
 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年四川省攀枝花七中高三(下)開學數(shù)學試卷(理科)(解析版) 題型:填空題

給出以下5個命題:
①曲線x2-(y-1)2=1按平移可得曲線(x+1)2-(y-3)2=1;
②設A、B為兩個定點,n為常數(shù),,則動點P的軌跡為雙曲線;
③若橢圓的左、右焦點分別為F1、F2,P是該橢圓上的任意一點,延長F1P到點M,使|F2P|=|PM|,則點M的軌跡是圓;
④A、B是平面內兩定點,平面內一動點P滿足向量夾角為銳角θ,且滿足 ,則點P的軌跡是圓(除去與直線AB的交點);
⑤已知正四面體A-BCD,動點P在△ABC內,且點P到平面BCD的距離與點P到點A的距離相等,則動點P的軌跡為橢圓的一部分.
其中所有真命題的序號為   

查看答案和解析>>

科目:高中數(shù)學 來源:高考數(shù)學一輪復習必備(第83課時):第九章 直線、平面、簡單幾何體-立體幾何小結(解析版) 題型:解答題

如圖,已知正四面體P-ABC中,棱AB、PC的中點分別是M、N.
求異面直線BN、PM所成的角的余弦值.

查看答案和解析>>

同步練習冊答案