(文科)對(duì)于任意實(shí)數(shù)x,不等式ax2-ax-1<0恒成立,則實(shí)數(shù)a的取值范圍是
(-4,0]
(-4,0]
分析:討論a是否為0,不為0時(shí),根據(jù)開(kāi)口方向和判別式建立不等式組,解之即可求出所求.
解答:解:當(dāng)a=0時(shí),-1<0恒成立,故滿足條件;
當(dāng)a≠0時(shí),對(duì)于任意實(shí)數(shù)x,不等式ax2-ax-1<0恒成立
a<0
△=a2-(-4a)<0
解得-4<a<0
綜上所述,-4<a≤0
故答案為:(-4,0]
點(diǎn)評(píng):本題主要考查了一元二次不等式的應(yīng)用,以及恒成立問(wèn)題,同時(shí)考查了分類(lèi)討論的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|x-1|+|x-2|.
(1)求函數(shù)f(x)的最小值;
(2)(文科)已知k為非零常數(shù),若不等式|t-k|+|t+k|≥|k|f(x)對(duì)于任意t∈R恒成立,求實(shí)數(shù)x的取值集合;
(3)(理科)設(shè)不等式f(x)≤2的解集為集合A,若存在x∈A,使得x2+(1-a)x=-9求實(shí)數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012屆江蘇省泰州中學(xué)高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題

(文科)(本題滿分14分)設(shè)函數(shù)f(x)=·,其中=(m,cos2x),=(1+sin2x,1),x∈R,且函數(shù)y=f(x)的圖象經(jīng)過(guò)點(diǎn)(,2).
(Ⅰ)求實(shí)數(shù)m的值;
(Ⅱ)求函數(shù)f(x)的最小值及此時(shí)x值的集合
(理科)(本題滿分14分)已知函數(shù)f(x)=ex-kx,x∈R
(Ⅰ)若k=e,試確定函數(shù)f(x)的單調(diào)區(qū)間
(Ⅱ)若k>0,且對(duì)于任意x∈R,f(|x|)>0恒成立,試確定實(shí)數(shù)k的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(文科)對(duì)于任意實(shí)數(shù)x,不等式ax2-ax-1<0恒成立,則實(shí)數(shù)a的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007-2008學(xué)年湖北省襄陽(yáng)市棗陽(yáng)一中、隨州市曾都一中高二(上)期中數(shù)學(xué)試卷(文理合卷)(解析版) 題型:填空題

(文科)對(duì)于任意實(shí)數(shù)x,不等式ax2-ax-1<0恒成立,則實(shí)數(shù)a的取值范圍是   

查看答案和解析>>

同步練習(xí)冊(cè)答案