已知函數(shù)f(x)=
2x-2(x≤1)
x2-6x+5(x>1)
,則函數(shù)f(x)-lnx的零點個數(shù)為( 。
A、1B、2C、3D、4
分析:函數(shù)f(x)-lnx的零點個數(shù) 即函數(shù)f(x)與函數(shù) y=lnx的交點個數(shù),結(jié)合圖形得出結(jié)論.
解答:解:函數(shù)f(x)-lnx的零點個數(shù) 即函數(shù)f(x)與函數(shù) y=lnx的交點個數(shù),如圖所示:
由于函數(shù)f(x)與函數(shù) y=lnx 的圖象有三個交點,故函數(shù)f(x)-lnx的零點個數(shù)為 3,
故選 C.
精英家教網(wǎng)
點評:本題考查函數(shù)的零點的定義,體現(xiàn)了數(shù)形結(jié)合和轉(zhuǎn)化的數(shù)學(xué)思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2-xx+1
;
(1)求出函數(shù)f(x)的對稱中心;
(2)證明:函數(shù)f(x)在(-1,+∞)上為減函數(shù);
(3)是否存在負(fù)數(shù)x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2-x-1,x≤0
x
,x>0
,則f[f(-2)]=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函數(shù)f(x)的值域和最小正周期;
(2)當(dāng)x∈[0,2π]時,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2-
ax+1
(a∈R)
的圖象過點(4,-1)
(1)求a的值;
(2)求證:f(x)在其定義域上有且只有一個零點;
(3)若f(x)+mx>1對一切的正實數(shù)x均成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],則當(dāng)x=
3
3
時,函數(shù)f(x)有最大值,最大值為
2
3
2
3

查看答案和解析>>

同步練習(xí)冊答案