已知函數(shù)有極小值

(Ⅰ)求實數(shù)的值;

(Ⅱ)若,且對任意恒成立,求的最大值為.

 

【答案】

(Ⅰ) ; (Ⅱ) .

【解析】

試題分析:(Ⅰ)利用導數(shù)等于零的點為極值點求出,注意復合函數(shù)求導方法,防止出錯;

(Ⅱ) 當時,令,然后求得最小值,只有小于的最小值就滿足題意,然后根據(jù)求出最大值.

試題解析:(Ⅰ),令,令

的極小值為,得.              6分

(Ⅱ)當時,令

 令,,故上是增函數(shù)

由于, 存在,使得

,知為減函數(shù);,知為增函數(shù).

,,又所以     12分

考點:1.利用導數(shù)求函數(shù)單調(diào)區(qū)間;2.利用導數(shù)求函數(shù)最值.3.復合函數(shù)求導.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(08年廣東佛山質(zhì)檢文)已知函數(shù)取得極小值.

(Ⅰ)求ab的值;

(Ⅱ)設直線. 若直線l與曲線S同時滿足下列兩個條件:

(1)直線l與曲線S相切且至少有兩個切點;

(2)對任意xR都有. 則稱直線l為曲線S的“上夾線”.

試證明:直線是曲線的“上夾線”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

(理)已知函數(shù)取得極小值.

(Ⅰ)求a,b的值;

(Ⅱ)設直線. 若直線l與曲線S同時滿足下列兩個條件:

(1)直線l與曲線S相切且至少有兩個切點;

(2)對任意xR都有. 則稱直線l為曲線S的“上夾線”.

試證明:直線是曲線的“上夾線”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)取得極小值.

(Ⅰ)求a,b的值;

(Ⅱ)設直線. 若直線l與曲線S同時滿足下列兩個條件:

(1)直線l與曲線S相切且至少有兩個切點;

(2)對任意xR都有. 則稱直線l為曲線S的“上夾線”.

試證明:直線是曲線的“上夾線”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設直線. 若直線l與曲線S同時滿足下列兩個條件:

①直線l與曲線S相切且至少有兩個切點;

②對任意xR都有. 則稱直線l為曲線S的“上夾線”.

(1) 類比“上夾線”的定義,給出“下夾線”的定義;

(2) 已知函數(shù)取得極小值,求a,b的值;

(3) 證明:直線是(2)中曲線的“上夾線”。

查看答案和解析>>

同步練習冊答案