設(shè)不等式組
x>0
y>0
y≤-nx+4n
(n∈N*)
所表示的平面區(qū)域Dn的整點(diǎn)(即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn))個(gè)數(shù)為an,則
1
2010
(a2+a4+…+a2010)
=
 
分析:利用不等式對(duì)應(yīng)的圖形為三角形,求出所有的整數(shù)點(diǎn)個(gè)數(shù),判斷出an為等差數(shù)列,利用等差數(shù)列的前n項(xiàng)和公式求出前n項(xiàng)和.
解答:解:
x>0
y>0
y≤-nx+4n
(n∈N*)
所表示的平面區(qū)域Dn的整點(diǎn)個(gè)數(shù)
an=3n+2n+n=6n
∴{an}為等差數(shù)列
∴a2,a4,…a2010也為等差數(shù)列
1
2010
(a2+a4+…+a2010)

=
1
2010
×
(a2+a2010)×1005
2

1
2010
×
(12 +2010×6 )×1005
2

=3018
故答案為3018.
點(diǎn)評(píng):求數(shù)列的前n項(xiàng)和,首先要求出數(shù)列的通項(xiàng),利用通項(xiàng)的特點(diǎn)選擇合適的求和方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)不等式組
|x|-2≤0
y-3≤0
x-2y≤2
所表示的平面區(qū)域?yàn)镾,則S的面積為
 
;若A、B為S內(nèi)的兩個(gè)點(diǎn),則|AB|的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在平面直角坐標(biāo)系上,設(shè)不等式組
x>0
y>0
y≤-m(x-3)
(n∈N*
所表示的平面區(qū)域?yàn)镈n,記Dn內(nèi)的整點(diǎn)(即橫坐標(biāo)和縱坐標(biāo)均
為整數(shù)的點(diǎn))的個(gè)數(shù)為an(n∈N*).
(Ⅰ)求a1,a2,a3并猜想an的表達(dá)式再用數(shù)學(xué)歸納法加以證明;
(Ⅱ)設(shè)數(shù)列{an}的前項(xiàng)和為Sn,數(shù)列{
1
Sn
}的前項(xiàng)和Tn,
是否存在自然數(shù)m?使得對(duì)一切n∈N*,Tn>m恒成立.若存在,
求出m的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•茂名二模)在平面直角坐標(biāo)系上,設(shè)不等式組
x>0
y≥0
y≤-2n(x-3)
(n∈N*)表示的平面區(qū)域?yàn)镈n,記Dn內(nèi)的整點(diǎn)(橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn))的個(gè)數(shù)為an
(1)求出a1,a2,a3的值(不要求寫過程);
(2)證明數(shù)列{an}為等差數(shù)列;
(3)令bn=
1
anan+1
(n∈N*),求b1+b2+…+bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•宣武區(qū)一模)設(shè)不等式組
x>0
y>0
y≤-nx+3n
所表示的平面區(qū)域?yàn)镈n,記Dn內(nèi)的整點(diǎn)個(gè)數(shù)為an(n∈N*).(整點(diǎn)即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn))
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)記數(shù)列{an}的前n項(xiàng)和為Sn,且Tn=
Sn
3•2n-1
,若對(duì)于一切的正整數(shù)n,總有Tn≤m,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案