【題目】已知函數(shù).

(1)證明:當時,有且僅有一個零點.

(2),函數(shù)的最小值為,求函數(shù)的值域.

【答案】(1)詳見解析(2)

【解析】

1)利用導數(shù)求得函數(shù)的單調(diào)區(qū)間和最小值,結(jié)合零點存在性定理,證得結(jié)論成立.2)先求得得到解析式和導函數(shù).根據(jù)(1)的結(jié)論,求得導函數(shù)的零點,根據(jù)轉(zhuǎn)化為的形式,進而求得最小值的表達式,利用構(gòu)造函數(shù)法和導數(shù)作為工具,求得最小值的取值范圍,進而求得的取值范圍.

1)證明:因為,所以.

,解得;令,解得,則在區(qū)間上單調(diào)遞減,在上單調(diào)遞增,故,因為,所以,所以當時,,故上沒有零點,因為,所以當時,,因為上單調(diào)遞增,所以有且僅有一個零點綜上,當時,有且僅有一個零點.

2)解:因為,所以.

由(1)知當時,有且僅有一個零點,因為,所以存在唯一,使得,且當時,;當時,.

在區(qū)間上單調(diào)遞減,在上單調(diào)遞增,所以

,又,即,代入上式得,

,,設(shè)函數(shù),則上單調(diào)遞減,故,因為函數(shù)上單調(diào)遞減,故對任意,存在唯一的,,使得,所以的值域是,綜上,當時,函數(shù)的最小值的值域為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,且過點

(1)求的方程;

(2)是否存在直線相交于兩點,且滿足:①為坐標原點)的斜率之和為2;②直線與圓相切,若存在,求出的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四棱錐中,四邊形為矩形,,,.

(1)求證:平面;

(2)設(shè),求平面與平面所成的二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“干支紀年法”是中國歷法上自古以來使用的紀年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被稱為“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”!疤旄伞币浴凹住弊珠_始,“地支”以“子”字開始,兩者按干支順序相配,組成了干支紀年法,其相配順序為:甲子、乙丑、丙寅…癸酉,甲戌、乙亥、丙子…癸末,甲申、乙酉、丙戌…癸巳,…,共得到個組成,周而復始,循環(huán)記錄。2014年是“干支紀年法”中的甲午年,那么2020年是“干支紀年法”中的()

A. 己亥年 B. 戊戌年 C. 庚子年 D. 辛丑年

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】十二生肖,又稱十二屬相,中國古人拿十二種動物來配十二地支,組成子鼠、丑牛、寅虎、卯兔、辰龍、巳蛇、午馬、未羊、申猴、酉雞、戌狗、亥豬十二屬相。現(xiàn)有十二生肖吉祥物各一件,甲、乙、丙三位同學一次隨機抽取一件作為禮物,甲同學喜歡馬、牛,乙同學喜歡馬、龍、狗,丙同學除了鼠不喜歡外其他的都喜歡,則這三位同學抽取的禮物都喜歡的概率是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在梯形中,,,的中點,的交點,將沿翻折到圖的位置,得到四棱錐

1)求證:;

2)當時,求到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)f(x)="xln" x–ax2+(2a–1)xaR.

)令g(x)=f'(x),求g(x)的單調(diào)區(qū)間;

)已知f(x)x=1處取得極大值.求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,以等腰直角三角形斜邊BC上的高AD為折痕,把△ABD與△ACD折成互相垂直的兩個平面后,某學生得出下列四個結(jié)論:

;

BAC60°;

三棱錐DABC是正三棱錐;

平面ADC的法向量和平面ABC的法向量互相垂直.

其中正確結(jié)論的序號是   .(請把正確結(jié)論的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】假設(shè)某種設(shè)備使用的年限(年)與所支出的維修費用(萬元)有以下統(tǒng)計資料:

使用年限

2

3

4

5

6

維修費用

2

4

5

6

7

若由資料知呈線性相關(guān)關(guān)系.試求:

1)求

2)線性回歸方程;

3)估計使用10年時,維修費用是多少?

附:利用最小二乘法計算的值時,可根據(jù)以下公式:

查看答案和解析>>

同步練習冊答案