正三棱臺ABCA'B'C'的上,下底的邊長的比為12,連AC',B'CA'B,把棱臺分成三個棱錐,則等于   

[  ]

A135   B123   C124   D1∶3∶4

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網如圖,P-ABC是底面邊長為1的正三棱錐,D、E、F分別為棱長PA、PB、PC上的點,截面DEF∥底面ABC,且棱臺DEF-ABC與棱錐P-ABC的棱長和相等.(棱長和是指多面體中所有棱的長度之和)
(1)證明:P-ABC為正四面體;
(2)若PD=PA=
12
求二面角D-BC-A的大;(結果用反三角函數(shù)值表示)
(3)設棱臺DEF-ABC的體積為V,是否存在體積為V且各棱長均相等的直平行六面體,使得它與棱臺DEF-ABC有相同的棱長和?若存在,請具體構造出這樣的一個直平行六面體,并給出證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2002年全國各省市高考模擬試題匯編 題型:013

在正三棱臺-ABC中,二面角─BC—A等于,則側棱與下底面ABC所成的角為

[  ]

A.arctan

B.

C.arctan

D.arctan2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:013

在正三棱臺ABC-中,,則,等于

[    ]

A.9∶6∶4   B.6∶4∶1   C.7∶3∶2   D.4∶6∶9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(04年上海卷)(16分)

如圖,P-ABC是底面邊長為1的正三棱錐,D、E、F分別為棱長PA、PB、PC上的點, 截面DEF∥底面ABC, 且棱臺DEF-ABC與棱錐P-ABC的棱長和相等.(棱長和是指多面體中所有棱的長度之和)

(1)     證明:P-ABC為正四面體;

(2)     若PD=PA, 求二面角D-BC-A的大;(結果用反三角函數(shù)值表示)

(3)     設棱臺DEF-ABC的體積為V, 是否存在體積為V且各棱長均相等的直

平行六面體,使得它與棱臺DEF-ABC有相同的棱長和? 若存在,請具體構造

出這樣的一個直平行六面體,并給出證明;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案