(本小題滿分13分)
已知圓滿足:①截y軸所得弦長為2;②被x軸分成兩段圓弧,其弧長的比為3:1;
③圓心到直線l:x-2y=0的距離為,求該圓的方程.
圓的方程是,或
【解析】(法一)設圓P的圓心為P(a,b),半徑為r,
則點P到x軸,y軸的距離分別為|b|,|a|.
由題意可知圓P截x軸所得劣弧對的圓心角為90°
圓P截x軸所得的弦長為,2|b|=,得r2=2b2, ……3分
圓P被y軸所截得的弦長為2,由勾股定理得r2=a2+1,
得2b2- a2=1. …………6分
又因為P(a,b)到直線x -2y=0的距離為,得d=,
即有 ……9分
綜前述得,解得,,于是r2= 2b2=2
所求圓的方程是,或 …………13分
(法二)設圓的方程為,
令x =0,得,
所以,得
再令y=0,可得,
所以,得,
即,從而有2b2- a2=1.
又因為P(a,b)到直線x -2y=0的距離為,得d=,
即有
綜前述得,解得,,于是r2= 2b2=2
所求圓的方程是,或
科目:高中數(shù)學 來源:2015屆江西省高一第二次月考數(shù)學試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數(shù).
(1)求函數(shù)的最小正周期和最大值;
(2)在給出的直角坐標系中,畫出函數(shù)在區(qū)間上的圖象.
(3)設0<x<,且方程有兩個不同的實數(shù)根,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數(shù)學 題型:解答題
(本小題滿分13分)已知定義域為的函數(shù)是奇函數(shù).
(1)求的值;(2)判斷函數(shù)的單調(diào)性;
(3)若對任意的,不等式恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數(shù)學 題型:解答題
(本小題滿分13分)已知集合, ,.
(1)求(∁; (2)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:河南省09-10學年高二下學期期末數(shù)學試題(理科) 題型:解答題
(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,為的中點。
(Ⅰ)求證:∥平面;
(Ⅱ)求異面直線與所成的角。www.7caiedu.cn
[來源:KS5
U.COM
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年福建省高三5月月考調(diào)理科數(shù)學 題型:解答題
(本小題滿分13分)
已知為銳角,且,函數(shù),數(shù)列{}的首項.
(1) 求函數(shù)的表達式;
(2)在中,若A=2,,BC=2,求的面積
(3) 求數(shù)列的前項和
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com